Skip to main content

Electricity-to-Light Conversion

  • Chapter
  • First Online:
The Physics of Semiconductors

Part of the book series: Graduate Texts in Physics ((GTP))

  • 9197 Accesses

Abstract

The radiometric quantities are derived from the radiant flux (power) Φe (or usually simply Φ) that is the total power (energy per time) emitted by a source, measured inWatts. The radiant intensity Ie is the radiant flux emitted by a point source into a solid angle,1 measured in Watts per steradian (or W/sr). The irradiance Ee is the radiant flux per area incident on a given plane, measured in W/m2. The radiance Le is the radiant flux per area and solid angle as, e.g., emitted by an extended source, measured in W/(m2 sr).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (John Wiley & Sons, New York, 1981)

    Google Scholar 

  2. S.L. Chuang, Physics of Optoelectronic Devices (John Wiley & Sons, New York, 1995)

    Google Scholar 

  3. S.A. Van Slyke, C.H. Chen, C.W. Tang, Appl. Phys. Lett. 69, 2160 (1996)

    Article  ADS  Google Scholar 

  4. S.E. Derenzo, M.J. Weber, E. Bourret-Courchesne, M.K. Klintenberg, Nucl.Instrum Methods A505, 111–117 (2003)

    ADS  Google Scholar 

  5. Y.A. Ono, Electroluminescent Displays (World Scientific, Singapore, 1995)

    Google Scholar 

  6. Glenn F. Knoll, Radiation Detection and Measurement, 3rd edn. (JohnWiley& Sons, New York, 2000)

    Google Scholar 

  7. G. Hoffmann, FH Emden, Private Communication (2006)

    Google Scholar 

  8. M. Nikl, V.V. Laguta, A. Vedda, Phys. Stat. Sol. (B) 245, 1701 (2008)

    Article  ADS  Google Scholar 

  9. S.E. Derenzo, W.W. Moses, M.J. Weber, A.C.West, Mater. Res. Soc. Symp. 348, 39 (1994)

    Google Scholar 

  10. E.F. Schubert, Light-emitting Diodes (Cambridge University Press, 2003)

    Google Scholar 

  11. A.A. Bergh, P.J. Dean, Proc. IEEE 60, 156–223 (1972)

    Article  Google Scholar 

  12. M.R. Krames, O.B. Shchekin, R. Mueller-Mach, G.O. Mueller, L. Zhou, G. Harbers, M.G. Craford, IEEE J. Displ. Technol. 3, 160 (2007)

    Article  ADS  Google Scholar 

  13. R.D. Dupuis, M.R. Krames, History, development, and applications of highbrightness visible light-emitting diodes. IEEE J. Lightw. Techn. 26, 1154 (2008)

    Article  ADS  Google Scholar 

  14. H.P.Maruska, D.A. Stevenson, J.I. Pankove, Appl. Phys. Lett. 22, 303 (1973)

    Article  ADS  Google Scholar 

  15. N. Koide, H. Kato, S. Yamasaki, K. Manabe, M. Hashimoto, H. Amano, K. Hiramatsu, I. Aksaki, J. Cryst. Growth 115, 639 (1991)

    Article  ADS  Google Scholar 

  16. W.N. Carr, Infrared Phys. 6, 1 (1966)

    Article  ADS  Google Scholar 

  17. S.V. Galginaitis, J. Appl. Phys. 36, 460 (1965)

    Article  ADS  Google Scholar 

  18. M.G. Craford, IEEE Trans. Electron Devices ED-24, 935 (1977)

    Article  Google Scholar 

  19. V. Haerle, B. Hahn, S. Kaiser, A. Weimar, S. Bader, F. Eberhard, A. Pl¨ossl, D. Eisert, Phys. Stat. Sol. (A) 201, 2736 (2004)

    Article  ADS  Google Scholar 

  20. OSRAM Opto Semiconductors GmbH (2001), Regensburg, Germany, www.osram-os.com

  21. LumiLeds Lighting, www.lumileds.com

  22. OSRAM Opto Semiconductors GmbH (2003), Regensburg, Germany, www. osram-os.com

  23. M.G. Craford, MRS Bull. 25(10), 27 (2000)

    Google Scholar 

  24. R. Mueller-Mach, G. Mueller, M.R. Krames, H.A. H¨oppe, F. Stadler, W.Schnick, Th. Juestel, P. Schmidt, Phys. Stat. Sol. (A) 202, 1727 (2005)

    Article  ADS  Google Scholar 

  25. Technical Datasheet DS51 (6/08) for Luxeon K2 (2008), www. philipslumileds.com

  26. S. Weise, Th. Zahner, Th. Lutz, A. Stich, Reliability of the DRAGON ®Product Family, Application Note Feb. 2009, www.osram-os.com

  27. Application note STS-KSE3692, Nichia Corp. (2004)

    Google Scholar 

  28. A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V.A. Haisler, A.I. Toropov, A.K. Bakarov, A.K. Kalagin, Electron. Lett. 42, 774 (2006)

    Article  Google Scholar 

  29. R.M. Stevenson, R.J. Young, P. Atkinson, K. Cooper, D.A. Ritchie, A.J. Shields, Nature 439, 179 (2006)

    Article  ADS  Google Scholar 

  30. R.J. Young, R.M. Stevenson, P. Atkinson, D.A. Ritchie, A.J. Shields, New J. Phys. 8, 29 (2006)

    Article  ADS  Google Scholar 

  31. A.J. Shields, Semiconductor quantum light sources, Nat. Photonics 1, 215 (2007)

    Article  ADS  Google Scholar 

  32. A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V.A. Haisler, A.I. Toropov, A.K. Bakarov, M. Scholz, S. B¨uttner, O. Benson, Phys. Stat. Sol. (C) 4, 547 (2007)

    Article  Google Scholar 

  33. S.K. Ray, K.M. Groom, M.D. Beattie, H.Y. Liu, M. Hopkinson, R.A. Hogg, IEEE Phot. Technol. Lett. 18, 58 (2006)

    Article  ADS  Google Scholar 

  34. C.W. Tang, S.A. Van Slyke, Appl. Phys. Lett. 51, 913 (1987)

    Article  ADS  Google Scholar 

  35. E.U. Rafailov, M.A. Cataluna, W. Sibbett, Nat. Photonics 1, 395 (2007)

    Article  ADS  Google Scholar 

  36. OSRAM Opto Semiconductors GmbH (2007), Regensburg, Germany,http://www.osram-os.com

  37. http://www.pioneerelectronics.com

  38. Model XEL-1 (2009), http://www.sony.com

  39. H.C. Casey, M.B Panish, Heterostructure Lasers, 1st edn. (Academic Press, New York, 1978) (Two volumes. Part A: Fundamental Principles and Part B: Materials and Operating Characteristics.)

    Google Scholar 

  40. H. Kressel, J. Butler, Semiconductor Lasers and LEDs (Academic Press, New York, 1st edn., 1977)

    Google Scholar 

  41. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Science 264, 553 (1994)

    ADS  Google Scholar 

  42. Lasers and Photonics Marketplace Seminar 2008

    Google Scholar 

  43. H. Haug, S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1994)

    Google Scholar 

  44. W.W. Chow, P.M. Smowton, P. Blood, A. Girndt, F. Jahnke, S.W. Koch, Appl. Phys. Lett. 71, 157 (1997)

    Article  ADS  Google Scholar 

  45. N. Kirstaedter, N.N. Ledentsov, M. Grundmann, D. Bimberg, V.M. Ustinov, S.S. Ruvimov, M.V. Maximov, P.S. Kop’ev, Zh.I. Alferov, U. Richter, P. Werner, U. G¨osele, J. Heydenreich, Electron. Lett. 30, 1416 (1994)

    Article  Google Scholar 

  46. M. Grundmann, Physica E 5, 167 (2000)

    Article  ADS  Google Scholar 

  47. M.B. Panish, I. Hayashi, S. Sumski, Appl. Phys. Lett. 16, 326 (1970)

    Article  ADS  Google Scholar 

  48. L.A. D’Asaro, J. Lumin. 7, 310 (1973)

    Google Scholar 

  49. H. Wenzel, F. Bugge, G. Erbert, R. H¨ulsewede, R. Staske, G. Tr¨ankle, Electron. Lett. 37, 351 (2001)

    Article  Google Scholar 

  50. H. Yonezu, I. Sakuma, K. Kobayashi, T. Kamejima, M. Ueno, Y. Nannichi, Jpn. J. Appl. Phys. 12, 1585 (1973)

    Article  ADS  Google Scholar 

  51. M. Kamp, J. Hofmann, A. Forchel, S. Lourdudoss, Appl. Phys. Lett. 78, 4074 (2001)

    Article  ADS  Google Scholar 

  52. M. Kamp, private communication (2006)

    Google Scholar 

  53. M. Fujite, R. Ushigome, T. Baba, IEEE Phot. Technol. Lett. 13, 403 (2001)

    Article  ADS  Google Scholar 

  54. G. Bj¨ork, A. Karlsson, Y. Yamamoto, Phys. Rev. A 50, 1675 (1994)

    Article  ADS  Google Scholar 

  55. Y. Yamamoto, S. Machida, G. Bj¨ork, Phys. Rev. A 44, 657 (1991)

    Article  ADS  Google Scholar 

  56. N.A. Pikhtin, S.O. Slipchenko, Z.N. Sokolova, A.L. Stankevich, D.A. Vinokurov, I.S. Tarasov, Zh.I. Alferov, Electron. Lett. 40, 1413 (2004)

    Article  Google Scholar 

  57. A. Knigge, G. Erbert, J. Jonsson, W. Pittroff, R. Staske, B. Sumpf, M. Weyers, G. Tr¨ankle, Electron. Lett. 41, 250 (2005)

    Article  Google Scholar 

  58. D. Garbuzov, I. Kudryashov, A. Komissarov, M. Maiorov, W. Roff, J. Connolly,Optical Fiber Communication Conference, OSA Technical Digest Series, WD1 (Optical Society of America, Washington, D.C., 2003)

    Google Scholar 

  59. T. Kimura, M. Nakae, J. Yoshida, S. Iizuka, A. Sato, Optical Fiber Digest Series, ThN5 485–486 (Optical Society of America, Washington, D.C., 2002)

    Google Scholar 

  60. W.T. Tsang, R.A. Logan, J.P. Van der Ziel, Appl. Phys. Lett. 34, 644 (1979)

    Article  ADS  Google Scholar 

  61. M. Grundmann, Appl. Phys. Lett. 77, 1428 (2000)

    Article  ADS  Google Scholar 

  62. F. Heinrichsdorff, C. Ribbat, M. Grundmann, D. Bimberg, Appl. Phys. Lett.76, 556 (2000)

    Article  ADS  Google Scholar 

  63. M. Grundmann, O. Stier, S. Bogn´ar, C. Ribbat, F. Heinrichsdorff, D. Bimberg, Phys. Stat. Sol. (A) 178, 255 (2000)

    Article  ADS  Google Scholar 

  64. Ch. Ribbat, R. Sellin, M. Grundmann, D. Bimberg, Phys. Stat. Sol. (B) 224, 819 (2000)

    Article  ADS  Google Scholar 

  65. D. Garbuzov, I. Kudryashov, A. Tsekoun, A. Komissarov, W. Roff, M. Maiorov, R. Menna, A. Lunev, J. Connolly, Optical Fiber Communication Conference 2002, Technical Digest: ThN6 (2002)

    Google Scholar 

  66. D. Garbuzov, M. Maiorov, R. Menna, A. Komissarov, V. Khalfin, I. Kudryashov, A. Lunev, L. DiMarco, J. Connolly, Proc. SPIE 4651, 92 (2002)

    Article  ADS  Google Scholar 

  67. M.-C. Amann, J. Buus, Tunable Laser Diodes (Artech House, Boston, 1998)

    Google Scholar 

  68. Datasheet High-Power 1550 nm DFB Source Lasers, A1112, Agere Systems (2001), www.agere.com

  69. J.N. Walpole, A.R. Calawa, T.C. Harman, S.H. Groves, Appl. Phys. Lett. 28, 552 (1976)

    Article  ADS  Google Scholar 

  70. S.-L. Lee, I.-F. Jang, C.-T. Pien, C.-Y. Wang, T.-T. Shih, IEEE Phot. Technol.Lett. 11, 955 (1999)

    Article  ADS  Google Scholar 

  71. B. Mason, G.A. Fish, S.P. DenBaars, L.A. Coldren, IEEE Phot. Technol.Lett. 10, 1211 (1998)

    Article  ADS  Google Scholar 

  72. C.J. Hwang, J.C. Dyment, J. Appl. Phys. 44, 3240 (1973)

    Article  ADS  Google Scholar 

  73. N.K. Dutta, S.J. Wang, A.B. Piccirilli, R.F. Karlicek Jr., R.L. Brown, M. Washington, U.K. Chakrabarti, A. Gnauck, J. Appl. Phys. 66, 4640 (1989)

    Article  ADS  Google Scholar 

  74. J.S. Gustavsson, ˚A. Haglund, J. Bengtsson, A. Larsson, IEEE J. Quantum Electr. QE-38, 1089 (2002)

    Article  ADS  Google Scholar 

  75. C.H. Henry, IEEE J. Quantum Electr. QE-18, 259 (1982)

    Article  ADS  Google Scholar 

  76. Y. Yamamoto, H.A. Haus, Phys. Rev. A 41, 5164 (1990)

    Article  ADS  Google Scholar 

  77. D. Welford, A. Mooradian, Appl. Phys. Lett. 40, 865 (1982); Appl. Phys. Lett. 41, 1007 (1982) (erratum)

    Article  ADS  Google Scholar 

  78. Quintessence Photonics Corporation, www.qpc.cc

  79. K. Iga, Vertical-cavity Surface-emitting Laser Devices (Springer, Berlin, 2003)

    Google Scholar 

  80. BinOptics Corporation, Ithaca, NY, www.binoptics.com

  81. Sandia National Laboratories, http://www.sandia.gov

  82. http://www.ulm-photonics.de

  83. C.J. Chang-Hasnain, Tunable VCSELs, IEEE J. Sel. Topics Quantum Electron. 6, 978 (2000)

    Article  Google Scholar 

  84. K.D. Choquette, MRS Bull. 27(7), 507 (2002)

    Google Scholar 

  85. M. Schulze, J.-M. Pelaprat, Photon. Spectra 5 (2001)

    Google Scholar 

  86. R.F. Kazarinov, R.A. Suris, Fiz. Tekh. Poluprovodn, 5, 797 (1971)

    Google Scholar 

  87. F. Capasso, K. Mohammed, A.Y. Cho, IEEE J. Quantum Electr. 22, 1853 (1986)

    Article  ADS  Google Scholar 

  88. Bandwidth 9, www.bw9.com

  89. F. R¨omer, C. Prott, J. Daleiden, S. Irmer, M. Strassner, A. Tarraf,H. Hillmer, IEEE LEOS International Semiconductor Laser Conference, Garmisch/Germany (2002)

    Google Scholar 

  90. Datasheet Sapphire TM 488–20 laser (2004), Coherent Inc.

    Google Scholar 

  91. F. Capasso, www.bell-labs.com

  92. J. Faist, www.qoe.ethz.ch

  93. H. Kr¨omer, Phys. Rev. 109, 1856 (1958)

    Article  ADS  Google Scholar 

  94. Opt. Quantum Electron. 23, Special Issue Far-infrared Semiconductor Lasers, ed. by E. Gornik, A.A. Andronov (Chapman and Hall, London, 1991)

    Google Scholar 

  95. E. Br¨undermann, Widely tunable far infrared hot hole semiconductor lasers, in Long-Wavelength Infrared Semiconductor Lasers ed. by H.K. Choi (John Wiley & Sons, New York, 2004), pp. 279–350

    Google Scholar 

  96. E. Br¨undermann, A.M. Linhart, H.P. R¨oser, O.D. Dubon, W.L. Hansen,E.E. Haller, Appl. Phys. Lett. 68, 1359 (1996)

    Article  ADS  Google Scholar 

  97. E. Br¨undermann, D.R. Chamberlin, E.E. Haller, Appl. Phys. Lett. 76, 2991 (2000)

    Article  ADS  Google Scholar 

  98. N.K. Dutta, Q. Wang, Semiconductor Optical Amplifiers (World Scientific,Singapore, 2006)

    Google Scholar 

  99. A.J. Collar, G.D. Henshall, J. Farr´e, B. Mikkelsen, Z. Wang, L. Eskildsen,D.S. Olesen, K.E. Stubkjaer, IEEE Phot. Technol. Lett. 2, 553 (1990)

    Article  ADS  Google Scholar 

  100. G. Jost, University of Ulm, Department of Optoelectronics, Annual Report 1998, p. 64

    Google Scholar 

  101. Ferdinand-Braun-Institut f¨ur H¨ochstfrequenztechnik, Berlin, www. fbh-berlin.de

  102. M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, Y. Nakata, J. Phys. D: Appl. Phys. 38, 2126–34 (2005)

    Article  ADS  Google Scholar 

  103. N. Yasuko, K. Kawaguchi, H. Ebe, T. Akiyama, M. Ekawa, K. Morito, M. Sugawara, Y. Arakawa, Phys. Rev. Lett. 20, 1908 (2008)

    Google Scholar 

  104. P. Borri, S. Schneider, W. Langbein, U. Woggon, A.E. Zhukov, V.M. Ustinov,N.N. Ledentsov, Zh.I. Alferov, D. Ouyang, D. Bimberg, Appl. Phys.Lett. 79, 2633 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Grundmann .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grundmann, M. (2010). Electricity-to-Light Conversion. In: The Physics of Semiconductors. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13884-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13884-3_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13883-6

  • Online ISBN: 978-3-642-13884-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics