Skip to main content

Quantum Monte Carlo Studies of Strongly Correlated Electron Systems

  • Conference paper
  • 1690 Accesses

Abstract

Electronic correlations are at the heart of modern solid state physics. The interest lies in emergent collective phenomena which appear at low energy scales and which often originate from competing interactions. In this article, we summarize three research subjects where the effects of correlations dominate and can be elucidated with the combined use of supercomputers and state-of-the-art stochastic algorithms.

i) We show that the semimetallic state of the two-dimensional honeycomb lattice with a point-like Fermi surface is unstable towards a canted antiferromagnetic insulator upon application of an in-plane magnetic field. The magnetic field shifts the up- and the down-spin cones in opposite directions thereby generating a finite density of states at the Fermi surface which triggers a nesting instability leading to antiferromagnetic insulating state. Our conclusions, based on mean-field arguments, are confirmed by large scale auxiliary field projective quantum Monte Carlo methods.

ii) Unbiased weak-coupling continuous time quantum Monte Carlo (CTQMC) is used to study the transition between the singlet and doublet (local moment) states of a single magnetic impurity coupled to s-wave superconducting leads, focusing on the Josephson current with 0 to π phase shift and the crossing of the Andreev bound states in the single particle spectral function. Extended to dynamical mean-field theory (DMFT), this impurity problem provides a link to the periodic Anderson model with superconducting conduction electrons (BCS-PAM). We compute the spectral functions which signal the transition from a coherent superposition of Andreev bound states to incoherent quasiparticle excitations.

iii) Dynamical quantum-cluster approaches, such as different cluster extensions of the DMFT (cluster DMFT) or the variational cluster approximation (VCA), combined with efficient cluster solvers, such as CTQMC provide controlled approximations of the single-particle Green’s function for lattice models of strongly correlated electrons. To access the thermodynamics, however, a thermodynamical potential is needed. We compute the numerically exact cluster grand potential within VCA using CTQMC in combination with a quantum Wang-Landau technique to reweight the coefficients in the expansion of the partition function of the two-dimensional Hubbard model at finite temperatures.

Keywords

  • Quantum Phase Transition
  • Honeycomb Lattice
  • Superconducting Order Parameter
  • Correlate Electron System
  • Josephson Current

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-13872-0_42
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-13872-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleiner, I.L., Kharzeev, D.E., Tsvelik, A.M.: Spontaneous symmetry breaking in graphene subjected to an in-plane magnetic field. Phys. Rev. B 76(19), 195415 (2007)

    CrossRef  Google Scholar 

  2. Assaad, F.F., Evertz, H.G.: World-line and determinental quantum Monte Carlo methods. In: H. Fehske, R. Schneider, A. Weisse (eds.) Computational Many-Particle Physics. Springer, Berlin (2008)

    Google Scholar 

  3. Assaad, F.F., Lang, T.C.: Diagrammatic determinantal quantum Monte Carlo methods: Projective schemes and applications to the Hubbard-Holstein model. Phys. Rev. B 76(3), 035116 (2007)

    CrossRef  Google Scholar 

  4. Bauer, J., Oguri, A., Hewson, A.C.: Spectral properties of locally correlated electrons in a Bardeen-Cooper-Schrieffer superconductor. Journal of Physics: Condensed Matter 19(48), 486211 (2007)

    CrossRef  Google Scholar 

  5. Beach, K.S.D.: Identifying the maximum entropy method as a special limit of stochastic analytic continuation. arXiv:cond-mat/0403055 (2004)

  6. Beach, K.S.D., Lee, P.A., Monthoux, P.: Field-induced antiferromagnetism in the Kondo insulator. Phys. Rev. Lett. 92, 026401 (2004)

    CrossRef  Google Scholar 

  7. Benjamin, C., Jonckheere, T., Zazunov, A., Martin, T.: Controllable π junction in a Josephson quantum-dot device with molecular spin. Eur. Phys. J. B 57, 279–289 (2007)

    CrossRef  Google Scholar 

  8. Bercx, M., Lang, T.C., Assaad, F.F.: Magnetic field induced semimetal-to-canted-antiferromagnet transition on the honeycomb lattice. Phys. Rev. B 80, 045412 (2009)

    CrossRef  Google Scholar 

  9. Cleuziou, J.P., Wernsdorfer, W., Bouchiat, V., Ondarçuhu, T., Monthioux, M.: Carbon nanotube superconducting quantum interference device. Nature Nanotechnology 1 (2006)

    Google Scholar 

  10. Eichler, A., Weiss, M., Oberholzer, S., Schönenberger, C., Yeyati, A.L., Cuevas, J.C., Martín-Rodero, A.: Even-odd effect in Andreev transport through a carbon nanotube quantum dot. Phys. Rev. Lett. 99(12), 126602 (2007)

    CrossRef  Google Scholar 

  11. Feldbacher, M., Assaad, F.F.: Efficient calculation of imaginary-time-displaced correlation functions in the projector auxiliary-field quantum Monte Carlo algorithm. Phys. Rev. B 63(7), 073105 (2001)

    CrossRef  Google Scholar 

  12. Georges, A., Kotliar, G., Krauth, W., Rozenberg, M.J.: Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68(1), 13 (1996)

    CrossRef  MathSciNet  Google Scholar 

  13. Gloor, T.A., Mila, F.: Strain induced correlation gaps in carbon nanotubes. Eur. Phys. J. B 38, 9–12 (2004)

    CrossRef  Google Scholar 

  14. Herbut, I.F.: Interactions and phase transitions on graphene’s honeycomb lattice. Phys. Rev. Lett. 97(14), 146401 (2006)

    CrossRef  Google Scholar 

  15. Jørgensen, H.I., Novotný, T., Grove-Rasmussen, K., Flensberg, K., Lindelof, P.E.: Critical 0-π transition in designed Josephson quantum dot junctions. Nano Letters 7(8), 2441–2445 (2007)

    CrossRef  Google Scholar 

  16. Kempa, H., Semmelhack, H.C., Esquinazi, P., Kopelevich, Y.: Absence of metal-insulator transition and coherent interlayer transport in oriented graphite in parallel magnetic fields. Solid State Communications 125(1), 1 (2003)

    CrossRef  Google Scholar 

  17. Kharzeev, D.E., Reyes, S.A., Tsvelik, A.M.: Spin density wave formulation in graphene facilitated by the in-plane magnetic field. arXiv:cond-mat/0611251 (2006)

  18. Luitz, D.J., Assaad, F.F.: A weak coupling ctqmc study of the single impurity and periodic Anderson models with s-wave superconducting baths. arXiv:0909.2656v2 (2009)

  19. Milat, I., Assaad, F., Sigrist, M.: Field induced magnetic ordering transition in Kondo insulators. Eur. Phys. J. B 38, 571–580 (2004)

    CrossRef  Google Scholar 

  20. Neto, A.H.C., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Reviews of Modern Physics 81(1), 109 (2009)

    CrossRef  Google Scholar 

  21. Paiva, T., Scalettar, R.T., Zheng, W., Singh, R.R.P., Oitmaa, J.: Ground-state and finite-temperature signatures of quantum phase transitions in the half-filled Hubbard model on a honeycomb lattice. Phys. Rev. B 72, 085123 (2005)

    CrossRef  Google Scholar 

  22. Rozhkov, A.V., Arovas, D.P.: Josephson coupling through a magnetic impurity. Phys. Rev. Lett. 82(13), 2788–2791 (1999)

    CrossRef  Google Scholar 

  23. Rubtsov, A.N., Savkin, V.V., Lichtenstein, A.I.: Continuous-time quantum Monte Carlo method for fermions. Phys. Rev. B 72(3), 035122 (2005)

    CrossRef  Google Scholar 

  24. Sandvik, A.: Stochastic method for analytic continuation of quantum Monte Carlo data. Phys. Rev. B 57, 10287 (1998)

    CrossRef  Google Scholar 

  25. Sorella, S., Tosatti, E.: Semi-metal-insulator transition of the Hubbard model in the honeycomb lattice. Europhys. Lett. 19, 699 (1992)

    CrossRef  Google Scholar 

  26. Wang, F., Landau, D.P.: Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram. Phys. Rev. E 64, 056101 (2001)

    CrossRef  Google Scholar 

  27. Wang, F., Landau, D.P.: Efficient, multiple-range random walk algorithm to calculate the densiy of states. Phys. Rev. Lett. 86, 2050 (2001)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. Lang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lang, T.C., Bercx, M., Luitz, D., Li, G., Assaad, F.F., Hanke, W. (2010). Quantum Monte Carlo Studies of Strongly Correlated Electron Systems. In: Wagner, S., Steinmetz, M., Bode, A., Müller, M. (eds) High Performance Computing in Science and Engineering, Garching/Munich 2009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13872-0_42

Download citation