Quantum Monte Carlo Studies of Strongly Correlated Electron Systems

  • Thomas C. LangEmail author
  • Martin Bercx
  • David Luitz
  • Gang Li
  • Fakher F. Assaad
  • Werner Hanke
Conference paper


Electronic correlations are at the heart of modern solid state physics. The interest lies in emergent collective phenomena which appear at low energy scales and which often originate from competing interactions. In this article, we summarize three research subjects where the effects of correlations dominate and can be elucidated with the combined use of supercomputers and state-of-the-art stochastic algorithms.

i) We show that the semimetallic state of the two-dimensional honeycomb lattice with a point-like Fermi surface is unstable towards a canted antiferromagnetic insulator upon application of an in-plane magnetic field. The magnetic field shifts the up- and the down-spin cones in opposite directions thereby generating a finite density of states at the Fermi surface which triggers a nesting instability leading to antiferromagnetic insulating state. Our conclusions, based on mean-field arguments, are confirmed by large scale auxiliary field projective quantum Monte Carlo methods.

ii) Unbiased weak-coupling continuous time quantum Monte Carlo (CTQMC) is used to study the transition between the singlet and doublet (local moment) states of a single magnetic impurity coupled to s-wave superconducting leads, focusing on the Josephson current with 0 to π phase shift and the crossing of the Andreev bound states in the single particle spectral function. Extended to dynamical mean-field theory (DMFT), this impurity problem provides a link to the periodic Anderson model with superconducting conduction electrons (BCS-PAM). We compute the spectral functions which signal the transition from a coherent superposition of Andreev bound states to incoherent quasiparticle excitations.

iii) Dynamical quantum-cluster approaches, such as different cluster extensions of the DMFT (cluster DMFT) or the variational cluster approximation (VCA), combined with efficient cluster solvers, such as CTQMC provide controlled approximations of the single-particle Green’s function for lattice models of strongly correlated electrons. To access the thermodynamics, however, a thermodynamical potential is needed. We compute the numerically exact cluster grand potential within VCA using CTQMC in combination with a quantum Wang-Landau technique to reweight the coefficients in the expansion of the partition function of the two-dimensional Hubbard model at finite temperatures.


Quantum Phase Transition Honeycomb Lattice Superconducting Order Parameter Correlate Electron System Josephson Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aleiner, I.L., Kharzeev, D.E., Tsvelik, A.M.: Spontaneous symmetry breaking in graphene subjected to an in-plane magnetic field. Phys. Rev. B 76(19), 195415 (2007) CrossRefGoogle Scholar
  2. 2.
    Assaad, F.F., Evertz, H.G.: World-line and determinental quantum Monte Carlo methods. In: H. Fehske, R. Schneider, A. Weisse (eds.) Computational Many-Particle Physics. Springer, Berlin (2008) Google Scholar
  3. 3.
    Assaad, F.F., Lang, T.C.: Diagrammatic determinantal quantum Monte Carlo methods: Projective schemes and applications to the Hubbard-Holstein model. Phys. Rev. B 76(3), 035116 (2007) CrossRefGoogle Scholar
  4. 4.
    Bauer, J., Oguri, A., Hewson, A.C.: Spectral properties of locally correlated electrons in a Bardeen-Cooper-Schrieffer superconductor. Journal of Physics: Condensed Matter 19(48), 486211 (2007) CrossRefGoogle Scholar
  5. 5.
    Beach, K.S.D.: Identifying the maximum entropy method as a special limit of stochastic analytic continuation. arXiv:cond-mat/0403055 (2004)
  6. 6.
    Beach, K.S.D., Lee, P.A., Monthoux, P.: Field-induced antiferromagnetism in the Kondo insulator. Phys. Rev. Lett. 92, 026401 (2004) CrossRefGoogle Scholar
  7. 7.
    Benjamin, C., Jonckheere, T., Zazunov, A., Martin, T.: Controllable π junction in a Josephson quantum-dot device with molecular spin. Eur. Phys. J. B 57, 279–289 (2007) CrossRefGoogle Scholar
  8. 8.
    Bercx, M., Lang, T.C., Assaad, F.F.: Magnetic field induced semimetal-to-canted-antiferromagnet transition on the honeycomb lattice. Phys. Rev. B 80, 045412 (2009) CrossRefGoogle Scholar
  9. 9.
    Cleuziou, J.P., Wernsdorfer, W., Bouchiat, V., Ondarçuhu, T., Monthioux, M.: Carbon nanotube superconducting quantum interference device. Nature Nanotechnology 1 (2006) Google Scholar
  10. 10.
    Eichler, A., Weiss, M., Oberholzer, S., Schönenberger, C., Yeyati, A.L., Cuevas, J.C., Martín-Rodero, A.: Even-odd effect in Andreev transport through a carbon nanotube quantum dot. Phys. Rev. Lett. 99(12), 126602 (2007) CrossRefGoogle Scholar
  11. 11.
    Feldbacher, M., Assaad, F.F.: Efficient calculation of imaginary-time-displaced correlation functions in the projector auxiliary-field quantum Monte Carlo algorithm. Phys. Rev. B 63(7), 073105 (2001) CrossRefGoogle Scholar
  12. 12.
    Georges, A., Kotliar, G., Krauth, W., Rozenberg, M.J.: Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68(1), 13 (1996) CrossRefMathSciNetGoogle Scholar
  13. 13.
    Gloor, T.A., Mila, F.: Strain induced correlation gaps in carbon nanotubes. Eur. Phys. J. B 38, 9–12 (2004) CrossRefGoogle Scholar
  14. 14.
    Herbut, I.F.: Interactions and phase transitions on graphene’s honeycomb lattice. Phys. Rev. Lett. 97(14), 146401 (2006) CrossRefGoogle Scholar
  15. 15.
    Jørgensen, H.I., Novotný, T., Grove-Rasmussen, K., Flensberg, K., Lindelof, P.E.: Critical 0-π transition in designed Josephson quantum dot junctions. Nano Letters 7(8), 2441–2445 (2007) CrossRefGoogle Scholar
  16. 16.
    Kempa, H., Semmelhack, H.C., Esquinazi, P., Kopelevich, Y.: Absence of metal-insulator transition and coherent interlayer transport in oriented graphite in parallel magnetic fields. Solid State Communications 125(1), 1 (2003) CrossRefGoogle Scholar
  17. 17.
    Kharzeev, D.E., Reyes, S.A., Tsvelik, A.M.: Spin density wave formulation in graphene facilitated by the in-plane magnetic field. arXiv:cond-mat/0611251 (2006)
  18. 18.
    Luitz, D.J., Assaad, F.F.: A weak coupling ctqmc study of the single impurity and periodic Anderson models with s-wave superconducting baths. arXiv:0909.2656v2 (2009)
  19. 19.
    Milat, I., Assaad, F., Sigrist, M.: Field induced magnetic ordering transition in Kondo insulators. Eur. Phys. J. B 38, 571–580 (2004) CrossRefGoogle Scholar
  20. 20.
    Neto, A.H.C., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Reviews of Modern Physics 81(1), 109 (2009) CrossRefGoogle Scholar
  21. 21.
    Paiva, T., Scalettar, R.T., Zheng, W., Singh, R.R.P., Oitmaa, J.: Ground-state and finite-temperature signatures of quantum phase transitions in the half-filled Hubbard model on a honeycomb lattice. Phys. Rev. B 72, 085123 (2005) CrossRefGoogle Scholar
  22. 22.
    Rozhkov, A.V., Arovas, D.P.: Josephson coupling through a magnetic impurity. Phys. Rev. Lett. 82(13), 2788–2791 (1999) CrossRefGoogle Scholar
  23. 23.
    Rubtsov, A.N., Savkin, V.V., Lichtenstein, A.I.: Continuous-time quantum Monte Carlo method for fermions. Phys. Rev. B 72(3), 035122 (2005) CrossRefGoogle Scholar
  24. 24.
    Sandvik, A.: Stochastic method for analytic continuation of quantum Monte Carlo data. Phys. Rev. B 57, 10287 (1998) CrossRefGoogle Scholar
  25. 25.
    Sorella, S., Tosatti, E.: Semi-metal-insulator transition of the Hubbard model in the honeycomb lattice. Europhys. Lett. 19, 699 (1992) CrossRefGoogle Scholar
  26. 26.
    Wang, F., Landau, D.P.: Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram. Phys. Rev. E 64, 056101 (2001) CrossRefGoogle Scholar
  27. 27.
    Wang, F., Landau, D.P.: Efficient, multiple-range random walk algorithm to calculate the densiy of states. Phys. Rev. Lett. 86, 2050 (2001) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Thomas C. Lang
    • 1
    Email author
  • Martin Bercx
    • 1
  • David Luitz
    • 1
  • Gang Li
    • 1
  • Fakher F. Assaad
    • 1
  • Werner Hanke
    • 1
  1. 1.Institut für Theoretische Physik & AstrophysikUniversität WürzburgWürzburgGermany

Personalised recommendations