Skip to main content

Abstract

Lattice Quantum Chromodynamics (LQCD) is the most versatile and powerful method to investigate non-perturbative effects in strong interaction physics. In view of the much improved statistical accuracy the control of systematic uncertainties became the most important issue in recent years. The most severe problem is the implementation of chiral symmetry. The BGR collaboration works with two different Dirac operators, both having good chiral properties but are suited best for the analysis of different aspects of QCD: Chirally Improved (CI) fermions are especially well suited for the investigation of excited hadrons while Fixed-Point (FP) fermions are ideal for studies in the so-called ε- and δ-regime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Jansen, Plenary talk presented at the XXVI International Symposium on Lattice Field Theory, July 14-19, 2008, Williamsburg, arXiv: 0810.5634.

  2. T. Burch, C. Gattringer, L. Ya. Glozman, R. Kleindl, C. B. Lang, A. Schäfer, Phys. Rev D 70, 0154502, 2004.

    Article  Google Scholar 

  3. T. Burch, C. Hagen, D. Hierl, A. Schäfer, C. Gattringer, L. Ya. Glozman, C. B. Lang, POS LAT2005, 097, 2006.

    Google Scholar 

  4. T. Burch, C. Gattringer, L. Ya. Glozman, C. Hagen, C. B. Lang, A. Schäfer, Phys. Rev D 73, 094505, 2006.

    Article  Google Scholar 

  5. T. Burch, C. Gattringer, L. Ya. Glozman, C. Hagen, C. B. Lang, A. Schäfer, Phys. Rev D 74, 014504, 2006.

    Article  Google Scholar 

  6. P. Hasenfratz, Nucl. Phys. Proc. Suppl. 63, 53, 1998.

    Article  Google Scholar 

  7. P. Hasenfratz, V. Laliena and F. Niedermayer, Phys. Lett. B 427, 125, 1998.

    Article  Google Scholar 

  8. P. Hasenfratz, Nucl. Phys. B 525, 401, 1998.

    Article  Google Scholar 

  9. F. Niedermayer, Nucl. Phys. Proc. Suppl. 73, 105, 1999.

    Article  MATH  Google Scholar 

  10. C. Gattringer, Phy. Rev. D 63, 114501, 2001.

    Article  Google Scholar 

  11. C. Gattringer, I. Hip and C. B. Lang, Nucl. Phys. B 597, 451, 2001.

    Article  MATH  Google Scholar 

  12. P. Hasenfratz, S. Hauswirth, K. Holland, T. Jörg, F. Niedermayer, U. Wenger, Nucl. Phys. B 643, 280, 2002.

    Article  Google Scholar 

  13. J. Gasser and H. Leutwyler, Phys. Lett. B 184, 83, 1987, 188, 477, 1987.

    Article  Google Scholar 

  14. J. Gasser and H. Leutwyler, Nucl. Phys. B 307, 763, 1988.

    Article  Google Scholar 

  15. P. Hasenfratz and H. Leutwyler, Nucl. Phys. B 343, 241, 1990.

    Article  Google Scholar 

  16. F. C. Hansen, Nucl. Phys. B 345, 685, 1990.

    Article  Google Scholar 

  17. S. Weinberg, Physica A 96, 327, 1979.

    Article  Google Scholar 

  18. J. Gasser and H. Leutwyler, Phys. Lett. B 125, 321, 325, 1983.

    Article  Google Scholar 

  19. J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.). 158, 142, 1984.

    Article  MathSciNet  Google Scholar 

  20. C. Gattringer, C. B. Lang, M. Limmer, T. Maurer, D. Mohler and A. Schäfer, PoS (LATTICE 2009) (2009) 093; [arXiv:0809.4514 [hep-lat]].

  21. C. Gattringer, C. Hagen, C. B. Lang, M. Limmer, D. Mohler and A. Schäfer Phys. Rev. D 79 (2009) 054501; arXiv:0812.1681 [hep-lat].

    Article  Google Scholar 

  22. R. Sommer, Nucl. Phys. B 411, 839, 1994.

    Article  Google Scholar 

  23. T. Burch, D. Chakrabarti, C. Hagen, C. B. Lang, M. Limmer, T. Maurer and A. Schäfer PoS LATTICE 2007 (2008) 091; arXiv:0709.3708.

  24. T. Burch, C. Hagen, C.B. Lang, M. Limmer, and A. Schäfer Phys. Rev. D 79 (2009) 014504; arXiv:0809.1103 [hep-lat].

    Article  Google Scholar 

  25. T. Burch, C. Hagen, C. B. Lang, M. Limmer, and A. Schäfer PoS LATTICE 2008 (2009) 110, [arXiv:0809.3923 [hep-lat]].

  26. C. Gattringer, L. Y. Glozman, C. B. Lang, D. Mohler and S. Prelovsek, Phys. Rev. D 78 (2008) 034501 [arXiv:0802.2020 [hep-lat]].

    Article  Google Scholar 

  27. L. Y. Glozman, C. B. Lang and M. Limmer, Phys. Rev. Lett. 103 (2009) 121601 [arXiv:0905.0811 [hep-lat]].

    Article  Google Scholar 

  28. L. Y. Glozman, C. B. Lang and M. Limmer, to appear in Few Body Systems [arXiv:0909.2939 [hep-lat]].

  29. G. Engel, C. Gattringer, C. B. Lang, M. Limmer, D. Mohler and A. Schafer, arXiv:0910.2802 [hep-lat].

  30. S. Prelovsek, T. Draper, C. B. Lang, M. Limmer, K. F. Liu, N. Mathur and D. Mohler, arXiv:0910.2749 [hep-lat].

  31. F. Bruckmann, F. Gruber, and A. Schäfer, to be published.

    Google Scholar 

  32. E. V. Shuryak and J. J. M. Verbaarschot, Nucl. Phys. A 560, 306, 1993 [arXiv:hep-th/9212088]. J. J. M. Verbaarschot and T. Wettig, Ann. Rev. Nucl. Part. Sci 50, 343, 2000 [arXiv:hep-ph/0003017]. P. H. Damgaard and S. M. Nishigaki, Phys. Rev. 63, 045012, 2001 [arXiv:hep-th/0006111].

    Google Scholar 

  33. P. Hasenfratz and F. Niedermayer, Nucl. Phys. B 414, 785, 1994.

    Article  Google Scholar 

  34. A. Hasenfratz, P. Hasenfratz and F. Niedermayer, Phys. Rev. D 72, 114508, 2005.

    Article  Google Scholar 

  35. ‘Stochastic Estimator of the s Quark Determinant in Full QCD Simulation’, M. Weingart diploma thesis, Uni Bern, 2007.

    Google Scholar 

  36. ‘Lattice Quantum ChromoDynamics with approximately chiral fermions’, D. Hierl, PhD thesis, Uni Regensburg, 2008.

    Google Scholar 

  37. ‘Mass gap in NNL order in the δ-regime of QCD’ C. Weiermann, PhD thesis, Uni Bern, 2009.

    Google Scholar 

  38. P. Hasenfratz, D. Hierl, V. Maillart, F. Niedermayer, A. Schäfer, C. Weiermann and M. Weingart arXiv:0707.0071 [hep-lat].

  39. ε-regime P. Hasenfratz, D. Hierl, V. Maillart, F. Niedermayer, A. Schäfer, C. Weiermann and M. Weingart PoS LAT2007 (2007) 077, arXiv:0710.0551 [hep-lat].

  40. P. Hasenfratz, D. Hierl, V. Maillart, F. Niedermayer, A. Schäfer, C. Weiermann and M. Weingart, in progress.

    Google Scholar 

  41. V. Maillart, F. Niedermayer arXiv:0807.0003 [hep-lat].

  42. C. Gattringer, M. Göckeler, P. Hasenfratz, S. Hauswirth, K. Holland, Th. Jörg, K. J. Juge, C. B. Lang, F. Niedermayer, P. E. L. Rakow, S. Schaefer and A. Schäfer, Nucl. Phys. B 677, 3, 2004.

    Article  Google Scholar 

  43. ‘NNL corrections to the δ-regime spectrum in the chiral limit using lattice regularization’, F. Niedermayer, Ch. Weiermann, in progress. ‘NNL chiral symmmetry breaking corrections to the δ-regime spectrum’ M. Weingart, in progress.

    Google Scholar 

  44. P. Hasenfratz, ‘The QCD rotator in the chiral limit’, arXiv:0909.3419 [hep-th].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Burch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Burch, T. et al. (2010). Dynamical Lattice QCD with Ginsparg-Wilson-Type Fermions. In: Wagner, S., Steinmetz, M., Bode, A., Müller, M. (eds) High Performance Computing in Science and Engineering, Garching/Munich 2009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13872-0_37

Download citation

Publish with us

Policies and ethics