Abstract
Compact stars made of strange matter, though still a hypothetical energetic ground state of matter, may be an alternative to neutron stars in accordance with the observed properties of the known compact stars. Binary systems of these so-called strange stars or of ordinary neutron stars do not exist infinitely long, but their orbits shrink due to gravitational-wave emission so that after some 100 million years of evolution the two compact objects merge. We investigate in our project how observations of such merger events, primarily by upcoming gravitational-wave experiments that will have the capability to detect such sources out to the Virgo galaxy cluster in 20 Mpc distance, could help to decide on the existence of strange matter stars. By performing three-dimensional relativistic hydrodynamical simulations on the HLRB II SGI Altix 4700 machine at the Leibniz-Rechenzentrum we identify fundamental differences between mergers of neutron stars and strange stars. The analysis of the simulated models focuses on observable signatures of the collision events, in particular on gravitational-wave measurements and the detection of strange matter clumps (“strangelets”) ejected during the merging and making a contribution to the cosmic ray flux. The results suggest that once the experiments reach the required sensitivity, a decision on the existence of strange stars may become possible.
Keywords
- Neutron Star
- Gravitational Wave
- Compact Star
- Strange Star
- Strange Quark Matter
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Bauswein, A., Janka, H.T., Oechslin, R., Pagliara, G., Sagert, I., Schaffner-Bielich, J., Hohle, M.M., Neuhaeuser, R.: Mass Ejection by Strange Star Mergers and Observational Implications. Phys. Rev. Lett. 103(1), 011101 (2009)
Bauswein, A., Oechslin, R., Janka, H.T.: submitted to Phys. Rev. D (2009)
Benz, W.: Smooth Particle Hydrodynamics - a Review. In: J.R. Buchler (ed.) Numerical Modelling of Nonlinear Stellar Pulsations Problems and Prospects (1990)
Blanchet, L., Damour, T., Schaefer, G.: Post-Newtonian hydrodynamics and post-Newtonian gravitational wave generation for numerical relativity. Mon. Not. R. Astron. Soc. 242, 289–305 (1990)
Bodmer, A.R.: Collapsed nuclei. Phys. Rev. D 4(6), 1601–1606 (1971). DOI 10.1103/PhysRevD.4.1601
Caldwell, R.R., Friedman, J.L.: Evidence against a strange ground state for baryons. Phys. Lett. B 264, 143–148 (1991)
Glendenning, N.: Compact Stars. Springer-Verlag, New York (1996)
Haensel, P., Potekhin, A.Y., Yakovlev, D.G.: Neutron Stars 1. Springer-Verlag, New York (2007)
Isenberg, J., Nester, J.: Canonical Gravity. In: General Relativity and Gravitation - Berne, Switz p. 23, 1980 (1980)
Lattimer, J.M., Swesty, F.D.: A generalized equation of state for hot, dense matter. Nuclear Physics A 535, 331–376 (1991). DOI 10.1016/0375-9474(91)90452-C
Madsen, J.: Astrophysical limits on the flux of quark nuggets. Phys. Rev. Lett. 61, 2909–2912 (1988)
Madsen, J.: Strangelet propagation and cosmic ray flux. Phys. Rev. D 71(1), 014026 (2005). DOI 10.1103/PhysRevD.71.014026
Monaghan, J.J.: SPH and Riemann Solvers. Journal of Computational Physics 136, 298–307 (1997)
Monaghan, J.J., Lattanzio, J.C.: A refined particle method for astrophysical problems. Astron. Astrophys. 149, 135–143 (1985)
Oechslin, R., Janka, H.T.: Gravitational Waves from Relativistic Neutron-Star Mergers with Microphysical Equations of State. Phys. Rev. Lett. 99(12), 121102 (2007). DOI 10.1103/PhysRevLett.99.121102
Oechslin, R., Janka, H.T., Marek, A.: Relativistic neutron star merger simulations with non-zero temperature equations of state. I. Variation of binary parameters and equation of state. Astron. Astrophys. 467, 395–409 (2007). DOI 10.1051/0004-6361:20066682
Oechslin, R., Uryū, K., Poghosyan, G., Thielemann, F.K.: The influence of quark matter at high densities on binary neutron star mergers. Mon. Not. R. Astron. Soc. 349, 1469–1480 (2004). DOI 10.1111/j.1365-2966.2004.07621.x
Price, D.J.: splash: An Interactive Visualisation Tool for Smoothed Particle Hydrodynamics Simulations. Publications of the Astronomical Society of Australia 24, 159–173 (2007). DOI 10.1071/AS07022
Shen, H., Toki, H., Oyamatsu, K., Sumiyoshi, K.: Relativistic Equation of State of Nuclear Matter for Supernova Explosion. Progress of Theoretical Physics 100, 1013–1031 (1998)
Wilson, J.R., Mathews, G.J., Marronetti, P.: Relativistic numerical model for close neutron-star binaries. Phys. Rev. D 54, 1317–1331 (1996)
Witten, E.: Cosmic separation of phases. Phys. Rev. D 30(2), 272–285 (1984). DOI 10.1103/PhysRevD.30.272
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bauswein, A., Janka, HT. (2010). Relativistic Simulations of Neutron Star and Strange Star Mergers. In: Wagner, S., Steinmetz, M., Bode, A., Müller, M. (eds) High Performance Computing in Science and Engineering, Garching/Munich 2009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13872-0_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-13872-0_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13871-3
Online ISBN: 978-3-642-13872-0
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)