Skip to main content

3D Simulations of Large-Scale Mixing in Core Collapse Supernova Explosions

  • Conference paper
High Performance Computing in Science and Engineering, Garching/Munich 2009

Abstract

We present the first 3D simulations of the large-scale mixing that takes place in the shock-heated stellar layers ejected in the explosion of a blue supergiant star. The blast is initiated and powered by neutrino-energy deposition behind the stalled shock by means of choosing sufficiently high neutrino luminosities from the contracting, nascent neutron star, whose high-density core is excised and replaced by a retreating inner grid boundary. The outgoing supernova shock is followed beyond its breakout from the stellar surface about two hours after the core collapse. Violent convective overturn in the post-shock layer causes the explosion to start with significant large-scale asphericity, which acts as a trigger of the growth of Rayleigh-Taylor instabilities at the composition interfaces of the exploding star. Deep inward mixing of hydrogen is found as well as fast-moving, metal-rich clumps penetrating with high velocities far into the hydrogen envelope of the star. Comparing with corresponding 2D (axially symmetric) calculations, we determine the growth of the Rayleigh-Taylor fingers to be faster, the deceleration of the dense metal-carrying clumps in the helium and hydrogen layers to be reduced, the asymptotic clump velocities in the hydrogen shell to be higher, and the outward radial mixing of heavy elements and inward mixing of hydrogen to be more efficient in 3D than in 2D.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anuchina, N., Volkov, V., Gordeychuk, V., Eskov, N., Ilyutina, O., Kozyrev, O.: Numerical simulations of Rayleigh-Taylor and Richtmyer-Meshkov instability using MAH-3 code. J. Comp. Appl. Math. 168, 11–20 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arnett, W.D., Bahcall, J.N., Kirshner, R.P., Woosley, S.E.: Supernova 1987A 27, 629–700 (1989). DOI 10.1146/annurev.aa.27.090189.003213

  3. Benz, W., Thielemann, F.K.: Convective instabilities in SN 1987A 348, L17–L20 (1990). DOI 10.1086/185620

  4. Blondin, J.M., Mezzacappa, A.: Pulsar spins from an instability in the accretion shock of supernovae 445, 58–60 (2007). DOI 10.1038/nature05428

  5. Blondin, J.M., Mezzacappa, A., DeMarino, C.: Stability of Standing Accretion Shocks, with an Eye toward Core-Collapse Supernovae 584, 971–980 (2003). DOI 10.1086/345812

  6. Burrows, A., Livne, E., Dessart, L., Ott, C.D., Murphy, J.: A New Mechanism for Core-Collapse Supernova Explosions. Astrophys. J. 640, 878–890 (2006). DOI 10.1086/500174

    Article  Google Scholar 

  7. Burrows, A., Livne, E., Dessart, L., Ott, C.D., Murphy, J.: Features of the Acoustic Mechanism of Core-Collapse Supernova Explosions. Astrophys. J. 655, 416–433 (2007). DOI 10.1086/509773

    Article  Google Scholar 

  8. Cabot, W.: Comparison of two- and three-dimensional simulations of miscible Rayleigh-Taylor instability. Physics of Fluids 18, 045101 (2006)

    Article  Google Scholar 

  9. Couch, S.M., Wheeler, J.C., Milosavljević, M.: Aspherical Core-Collapse Supernovae in Red Supergiants Powered by Nonrelativistic Jets. Astrophys. J. 696, 953–970 (2009). DOI 10.1088/0004-637X/696/1/953

    Article  Google Scholar 

  10. Fryxell, B., Arnett, D., Müller, E.: Instabilities and clumping in SN 1987A. I - Early evolution in two dimensions 367, 619–634 (1991). DOI 10.1086/169657

  11. Hachisu, I., Matsuda, T., Nomoto, K., Shigeyama, T.: Nonlinear growth of Rayleigh-Taylor instabilities and mixing in SN 1987A. Astrophys. J. Lett. 358, L57–L61 (1990). DOI 10.1086/185779

    Article  Google Scholar 

  12. Hammer, N.J., Janka, H., Mueller, E.: Three-Dimensional Simulations of Mixing Instabilities in Supernova Explosions. ArXiv e-prints (2009)

    Google Scholar 

  13. Herant, M., Benz, W.: Hydrodynamical instabilities and mixing in SN 1987A - Two-dimensional simulations of the first 3 months 370, L81–L84 (1991). DOI 10.1086/185982

  14. Hirata, K., Kajita, T., Koshiba, M., Nakahata, M., Oyama, Y.: Observation of a neutrino burst from the supernova SN1987A. Physical Review Letters 58, 1490–1493 (1987)

    Article  Google Scholar 

  15. Janka, H.T., Langanke, K., Marek, A., Martínez-Pinedo, G., Müller, B.: Theory of core-collapse supernovae 442, 38–74 (2007). DOI 10.1016/j.physrep.2007.02.002

  16. Joggerst, C.C., Woosley, S.E., Heger, A.: Mixing in Zero- and Solar-Metallicity Supernovae. Astrophys. J. 693, 1780–1802 (2009). DOI 10.1088/0004-637X/693/2/1780

    Article  Google Scholar 

  17. Kane, J., Arnett, D., Remington, B.A., Glendinning, S.G., Bazán, G., Müller, E., Fryxell, B.A., Teyssier, R.: Two-dimensional versus Three-dimensional Supernova Hydrodynamic Instability Growth. Astrophys. J. 528, 989–994 (2000). DOI 10.1086/308220

    Article  Google Scholar 

  18. Kifonidis, K., Plewa, T., Janka, H.T., Müller, E.: Non-spherical core collapse supernovae. I. Neutrino-driven convection, Rayleigh-Taylor instabilities, and the formation and propagation of metal clumps 408, 621–649 (2003). DOI 10.1051/0004-6361:20030863

  19. Kifonidis, K., Plewa, T., Scheck, L., Janka, H.T., Müller, E.: Non-Spherical Core-Collapse Supernovae II. Late-Time Evolution of Globally Anisotropic Neutrino-Driven Explosions and Implications for SN 1987A 453, 661–678 (2006)

    Google Scholar 

  20. Marek, A., Janka, H.T.: Delayed Neutrino-Driven Supernova Explosions Aided by the Standing Accretion-Shock Instability. Astrophys. J. 694, 664–696 (2009). DOI 10.1088/0004-637X/694/1/664

    Article  Google Scholar 

  21. Müller, E., Fryxell, B., Arnett, D.: High Resolution Numerical Simulations of Instabilities, Mixing, and Clumping in Supernova 1987A. In: I.J. Danziger, K. Kjaer (eds.) European Southern Observatory Astrophysics Symposia, European Southern Observatory Astrophysics Symposia, vol. 37, p. 99 (1991)

    Google Scholar 

  22. Müller, E., Fryxell, B., Arnett, D.: Instability and clumping in SN 1987A 251, 505–514 (1991)

    Google Scholar 

  23. Müller, E., Hillebrandt, W., Orio, M., Hoflich, P., Monchmeyer, R., Fryxell, B.A.: Mixing and fragmentation in supernova envelopes. Astron. Astrophys. 220, 167–176 (1989)

    Google Scholar 

  24. Nagasawa, M., Nakamura, T., Miyama, S.M.: Three-dimensional hydrodynamical simulations of type II supernova - Mixing and fragmentation of ejecta. Proc. Astron. Soc. Pacific 40, 691–708 (1988)

    Google Scholar 

  25. Remington, B.A., Drake, R.P., Ryutov, D.D.: Experimental astrophysics with high power lasers and Z pinches. Reviews of Modern Physics 78, 755–807 (2006). DOI 10.1103/RevModPhys.78.755

    Article  Google Scholar 

  26. Scheck, L.: PhD thesis, Technical University Munich (2007)

    Google Scholar 

  27. Scheck, L., Janka, H.T., Foglizzo, T., Kifonidis, K.: Multidimensional supernova simulations with approximative neutrino transport. II. Convection and the advective-acoustic cycle in the supernova core 477, 931–952 (2008). DOI 10.1051/0004-6361:20077701

  28. Scheck, L., Kifonidis, K., Janka, H.T., Müller, E.: Multidimensional supernova simulations with approximative neutrino transport. I. Neutron star kicks and the anisotropy of neutrino-driven explosions in two spatial dimensions 457, 963–986 (2006). URL 10.1051/0004-6361:20064855

  29. Scheck, L., Plewa, T., Janka, H.T., Kifonidis, K., Müller, E.: Pulsar Recoil by Large-Scale Anisotropies in Supernova Explosions. Physical Review Letters 92(1), 011103 (2004)

    Article  Google Scholar 

  30. Timmes, F.X., Swesty, F.D.: The Accuracy, Consistency, and Speed of an Electron-Positron Equation of State Based on Table Interpolation of the Helmholtz Free Energy 126, 501–516 (2000)

    Google Scholar 

  31. Utrobin, V.P.: The Light Curve of Supernova 1987A: The Structure of the Presupernova and Radioactive Nickel Mixing. Astronomy Letters 30, 293–308 (2004). DOI 10.1134/1.1738152

    Article  Google Scholar 

  32. Wang, L., Wheeler, J.C.: Spectropolarimetry of Supernovae. Ann. Rev. Astron. Astrophys. 46, 433–474 (2008). DOI 10.1146/annurev.astro.46.060407.145139

    Article  Google Scholar 

  33. Woosley, S.E., Pinto, P.A., Ensman, L.: Supernova 1987A - Six weeks later 324, 466–489 (1988). DOI 10.1086/165908

  34. Yamada, Y., Nakamura, T., Oohara, K.: Three Dimensional Simulations of Supernova Explosion. I. Progress of Theoretical Physics 84, 436–443 (1990). DOI 10.1143/PTP.84.436

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Hammer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hammer, N., Janka, HT., Müller, E. (2010). 3D Simulations of Large-Scale Mixing in Core Collapse Supernova Explosions. In: Wagner, S., Steinmetz, M., Bode, A., Müller, M. (eds) High Performance Computing in Science and Engineering, Garching/Munich 2009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13872-0_28

Download citation

Publish with us

Policies and ethics