Skip to main content
  • 1824 Accesses

Abstract

Computational fluid dynamics for complex industrial applications up to now usually refers to RANS (Reynolds-Averaged Navier Stokes) simulations with appropriate statistical turbulence models. Existing RANS turbulence models, however, often fail to accurately predict separated and reattached flows. Better results but higher computational costs are expected from Large-Eddy Simulations (LES). It is therefore a common interest to develop efficient and robust LES approaches for the prediction of complex flows with industrial relevance. An efficient representation of physically complex flows can be achieved with an Implicit LES approach, where the truncation error of the numerical discretization itself functions as turbulence model. We employ an Adaptive Local Deconvolution Method (ALDM) implemented in a solver for the incompressible Navier-Stokes equations where the domain is discretized on a Cartesian grid. Boundaries of arbitrary shape are represented by a second-order accurate Conservative Immersed Interface Method (CIIM). In this report we point out the computational aspects of CIIM in the framework of ILES on the example of the flow over a circular cylinder at Re = 3,900. As benchmark an ILES with ALDM on body-fitted grids and with a usual formulation of the wall-boundary condition is taken. Two simulations with similar numerical resolution are compared with experimental reference data. Also compared are their computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. A. Adams, S. Hickel, S. Franz, Implicit subgrid-scale modeling by adaptive deconvolution. J. Comput. Phys. 200 412–431, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Breuer, Large eddy simulation of the sub-critical flow past a circular cylinder: numerical and modeling aspects, Int. J. Numer. Meth. Fluids 28 1281–1302, 1998.

    Article  MATH  Google Scholar 

  3. M. Dröge, Cartesian Grid Methods for Turbulent Flow Simulation in Complex Geometries, Ph.D thesis, University of Groningen, 2007.

    Google Scholar 

  4. J. Franke, W. Frank, Large edy simulation of the flow past a circular cylinder at Re D =3900, J. Wind Eng. Ind. Aerod. 90 1191–1206, 2002.

    Article  Google Scholar 

  5. J. Fröhlich, W. Rodi, P. H. Kessler, S. Parpais, J. P. Bertoglio, D. Laurence, Large eddy simulation of flow around circular cylinders on structured and unstructured grids, in CNRS DFG Collaborative Research Programme, vol. 66, Vieweg, Braunschweig, pp. 319–338, 1998.

    Google Scholar 

  6. A. Harten, B. Engquist, S. Osher, S. Chakravarthy, Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71 231–303, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  7. S. Hickel, N. A. Adams, Efficient implementation of nonlinear deconvolution methods for implicit large-eddy simulation, in High Performance Computing in Science and Engineering, Springer, Berlin, pp. 293–306, 2006.

    Google Scholar 

  8. S. Hickel, N. A. Adams, J.A. Domaradzki, An adaptive local deconvolution method for implicit LES, J. Comput. Phys. 213 413–436, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Hickel, T. Kempe, N. A. Adams, Implicit large-eddy simulation applied to turbulent channel flow with periodic constrictions. Theor. and Comput. Fluid Dyn 22 227–242, 2007.

    Article  Google Scholar 

  10. S. Hickel, N. A. Adams, N. N.Mansour, Implicit subgrid-scale modeling for large-eddy simulation of passive-scalar mixing, Phys. Fluids. 19 095102, 2007.

    Article  Google Scholar 

  11. S. Hickel, N. A. Adams, On implicit subgrid-scale modeling in wall-bounded flows, Phys. Fluids. 19 105106, 2007.

    Article  Google Scholar 

  12. S. Hickel, N. A. Adams, Implicit LES applied to zero-pressure-gradient and adverse-pressure-gradient boundary-layer turbulence. Int. J. Heat Fluid Flow 29 626–639, 2008.

    Article  Google Scholar 

  13. S. Hickel, D. V. Terzi, J. Fröhlich, An adaptive local deconvolution method for general curvilinear coordinate systems. In Advances in Turbulence XII, Springer, Berlin, 2009.

    Google Scholar 

  14. C. Hinterberger, Dreidimensionale und tiefengemittelte Large-Eddy-Simulation von Flachwasserströmungen. PhD thesis, University of Karlsruhe, 2004.

    Google Scholar 

  15. X. Y. Hu, B. C. Khoo, N. A. Adams, F. L. Huang, A conservative interface method for compressible flows, J. Comput. Phys. 219 553–578, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Kravchenko, P. Moin, Numerical studies of flow over a circular cylinder at Re D =3900, Phys. Fluids. 12 403–417, 2000.

    Article  MATH  Google Scholar 

  17. L.M. Lourenco, C. Shih, Characteristics of the plane turbulent near wake of a circular cylinder, A particle image velocimetry study, extracted from [3].

    Google Scholar 

  18. X. Ma, G.-S. Karamanos, G. E. Karniadakis, Dynamics and low-dimensionality of a turbulent near wake, J. Fluid Mech. 410 29–65, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  19. K. Mahesh, G. Constantinescu, P. Moin, A numerical method for large-eddy simulation in complex geometries, J. Comp. Phys., 197 215–240, 2004.

    Article  MATH  Google Scholar 

  20. M. Meyer, A. Devesa, S. Hickel, X.Y. Hu, N. A.Adams, A Conservative Immersed Interface Method for Large-Eddy Simulation of Incompressible Flows, submitted 2009.

    Google Scholar 

  21. M. Meyer, S. Hickel, N. A. Adams, Assessment of Implicit Large-Eddy Simulation with a Conservative Immersed Interface Method for Turbulent Cylinder Flow, (in press) Int. J. Heat Fluid Flow 31, 2010.

    Google Scholar 

  22. R. Mittal, G. Iaccarino, Immersed boundary methods, Annu. Rev. Fluid Mech. 37 239–261, 2005.

    Article  MathSciNet  Google Scholar 

  23. C. Norberg, Experimental investigation of the flow around a circular cylinder: influence of aspect ratio. J. Fluid Mech. 258, 287–316, 1994.

    Article  Google Scholar 

  24. L. Ong, J. Wallace, The velocity field of the turbulent very near wake of a circular cylinder, Exp. Fluids, 20 441–453, 1996.

    Article  Google Scholar 

  25. N. Park, J. Y. Yoo, H. Choi, Discretization errors in large eddy simulation: on the suitability of centered and upwind-biased compact difference schemes, J. Comp. Phys., 198 580–616, 2004.

    Article  MATH  Google Scholar 

  26. P. Parnaudeau, J. Carlier, D. Heitz, E. Lamballais, Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900, Phys. Fluids. 20 085101-085101-14, 2008.

    Article  Google Scholar 

  27. C.-W. Shu, Total-variation-diminishing time discretizations, SIAM J. Sci. Stat. Comput. 9 1073–1084, 1988.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meyer, M., Hickel, S., Adams, N.A. (2010). Computational Aspects of Implicit LES of Complex Flows. In: Wagner, S., Steinmetz, M., Bode, A., Müller, M. (eds) High Performance Computing in Science and Engineering, Garching/Munich 2009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13872-0_12

Download citation

Publish with us

Policies and ethics