Advertisement

Attacking the Knudsen-Preneel Compression Functions

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6147)

Abstract

Knudsen and Preneel (Asiacrypt’96 and Crypto’97) introduced a hash function design in which a linear error-correcting code is used to build a wide-pipe compression function from underlying blockciphers operating in Davies-Meyer mode. In this paper, we (re)analyse the preimage resistance of the Knudsen-Preneel compression functions in the setting of public random functions.

We give a new non-adaptive preimage attack, beating the one given by Knudsen and Preneel, that is optimal in terms of query complexity. Moreover, our new attack falsifies their (conjectured) preimage resistance security bound and shows that intuitive bounds based on the number of ‘active’ components can be treacherous.

Complementing our attack is a formal analysis of the query complexity (both lower and upper bounds) of preimage-finding attacks. This analysis shows that for many concrete codes the time complexity of our attack is optimal.

Keywords

Hash Function Block Cipher Query Complexity Dual Code Compression Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based hash-function constructions from PGV. In: Yung [26], pp. 320–335Google Scholar
  2. 2.
    Camion, P., Patarin, J.: The Knapsack Hash Function proposed at Crypto 1989 can be broken. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 39–53. Springer, Heidelberg (1991)Google Scholar
  3. 3.
    Chose, P., Joux, A., Mitton, M.: Fast correlation attacks: An algorithmic point of view. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 209–221. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Dunkelman, O. (ed.): FSE 2009. LNCS, vol. 5665. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  5. 5.
    Fleischmann, E., Gorski, M., Lucks, S.: On the security of Tandem-DM. In: Dunkelman [4], pp. 84–103Google Scholar
  6. 6.
    Fleischmann, E., Gorski, M., Lucks, S.: Security of cyclic double block length hash functions. In: Parker [14], pp. 153–175Google Scholar
  7. 7.
    Knudsen, L., Muller, F.: Some attacks against a double length hash proposal. In: Roy, B.K. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 462–473. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Knudsen, L.R., Preneel, B.: Hash functions based on block ciphers and quaternary codes. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 77–90. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  9. 9.
    Knudsen, L.R., Preneel, B.: Fast and secure hashing based on codes. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 485–498. Springer, Heidelberg (1997)Google Scholar
  10. 10.
    Knudsen, L.R., Preneel, B.: Construction of secure and fast hash functions using nonbinary error-correcting codes. IEEE Transactions on Information Theory 48(9), 2524–2539 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Matsumoto, R., Kurosawa, K., Itoh, T., Konno, T., Uyematsu, T.: Primal-dual distance bounds of linear codes with application to cryptography. IEEE Transactions on Information Theory 52(9), 4251–4256 (2006)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Nandi, M., Lee, W., Sakurai, K., Lee, S.: Security analysis of a 2/3-rate double length compression function in black-box model. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 243–254. Springer, Heidelberg (2005)Google Scholar
  13. 13.
    Özen, O., Stam, M.: Another glance at double-length hashing. In: Parker [14], pp. 176–201Google Scholar
  14. 14.
    Parker, M.G. (ed.): Cryptography and Coding 2009. LNCS, vol. 5921. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  15. 15.
    Peyrin, T., Gilbert, H., Muller, F., Robshaw, M.: Combining compression functions and block cipher-based hash functions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 315–331. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers: A synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 368–378. Springer, Heidelberg (1994)Google Scholar
  17. 17.
    Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: Definitions, implications and separations for preimage resistance, second-preimage resistance, and collision resistance. In: Roy, B.K., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 371–388. Springer, Heidelberg (2004)Google Scholar
  18. 18.
    Rogaway, P., Steinberger, J.: Security/efficiency tradeoffs for permutation-based hashing. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 220–236. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Schroeppel, R., Shamir, A.: A T = O(2n/2), S = O(2n/4) algorithm for certain NP-complete problems. SIAM Journal on Computing 10, 456–464 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Seurin, Y., Peyrin, T.: Security analysis of constructions combining FIL random oracles. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 119–136. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Shrimpton, T., Stam, M.: Building a collision-resistant compression function from non-compressing primitives. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 643–654. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Stam, M.: Beyond uniformity: Better security/efficiency tradeoffs for compression functions. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 397–412. Springer, Heidelberg (2008)Google Scholar
  23. 23.
    Stam, M.: Block cipher based hashing revisited. In: Dunkelman [4], pp. 67–83Google Scholar
  24. 24.
    Wagner, D.: A generalized birthday problem. In: Yung [26], pp. 288–303Google Scholar
  25. 25.
    Watanabe, D.: A note on the security proof of Knudsen-Preneel construction of a hash function (unpublished manuscript) (2006), http://csrc.nist.gov/groups/ST/hash/documents/WATANABE_kp_attack.pdf
  26. 26.
    Yung, M. (ed.): CRYPTO 2002. LNCS, vol. 2442. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  27. 27.
    Yuval, G.: How to swindle Rabin. Cryptologia 3, 187–189 (1979)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.EPFL IC IIF LACALLausanneSwitzerland
  2. 2.Dept. of Computer SciencePortland State UniversityPortlandUSA

Personalised recommendations