Skip to main content

Nonlinear Equivalence of Stream Ciphers

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNSC,volume 6147)

Abstract

In this paper we investigate nonlinear equivalence of stream ciphers over a finite field, exemplified by the pure LFSR-based filter generator over \(\mathbb{F}_2\). We define a nonlinear equivalence class consisting of filter generators of length n that generate a binary keystream of period dividing 2n − 1, and investigate certain cryptographic properties of the ciphers in this class. We show that a number of important cryptographic properties, such as algebraic immunity and nonlinearity, are not invariant among elements of the same equivalence class. It follows that analysis of cipher-components in isolation presents some limitations, as it most often involves investigating cryptographic properties that vary among equivalent ciphers. Thus in order to assess the resistance of a cipher against a certain type of attack, one should in theory determine the weakest equivalent cipher and not only a particular instance. This is however likely to be a very difficult task, when we consider the size of the equivalence class for ciphers used in practice; therefore assessing the exact cryptographic properties of a cipher appears to be notoriously difficult.

Keywords

  • Stream ciphers
  • sequences
  • nonlinear equivalence

References

  1. Barkan, E., Biham, E.: How Many Ways Can You Write Rijndael? In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 160–175. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  2. Cid, C., Murphy, S., Robshaw, M.J.B.: An Algebraic Framework for Cipher Embeddings. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 278–289. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  3. Courtois, N., Meier, W.: Algebraic Attacks on Stream Ciphers with Linear Feedback. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  4. Englund, H., Hell, M., Johansson, T.: Correlation attacks using a new class of weak feedback polynomials. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 127–142. Springer, Heidelberg (2004)

    Google Scholar 

  5. Golomb, S.W., Gong, G.: Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar. Cambridge University Press, New York (2004)

    Google Scholar 

  6. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and their Applications. Cambridge University Press, Cambridge (1994) (revised edition)

    MATH  Google Scholar 

  7. Meier, W., Staffelbach, O.: Fast correltaion attacks on stream ciphers (extended abstract). In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 301–314. Springer, Heidelberg (1988)

    Google Scholar 

  8. Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)

    Google Scholar 

  9. Murphy, S., Robshaw, M.J.B.: Essential Algebraic Structure Within the AES. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 1–16. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  10. Rønjom, S., Helleseth, T.: A new attack on the filter generator. IEEE Transactions on Information Theory 53(5), 1752–1758 (2007)

    CrossRef  Google Scholar 

  11. Siegenthaler, T.: Correlation-immunity of nonlinear combining functions for cryptographic applications. IEEE Transactions on Information Theory 30(5), 776–780 (1984)

    MATH  CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rønjom, S., Cid, C. (2010). Nonlinear Equivalence of Stream Ciphers. In: Hong, S., Iwata, T. (eds) Fast Software Encryption. FSE 2010. Lecture Notes in Computer Science, vol 6147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13858-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13858-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13857-7

  • Online ISBN: 978-3-642-13858-4

  • eBook Packages: Computer ScienceComputer Science (R0)