Skip to main content

Parameter Screening and Optimisation for ILP Using Designed Experiments

  • Conference paper
  • 539 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5989))

Abstract

Reports of experiments conducted with an Inductive Logic Programming system rarely describe how specific values of parameters of the system are arrived at when constructing models. Usually, no attempt is made to identify sensitive parameters, and those that are used are often given “factory-supplied” default values, or values obtained from some non-systematic exploratory analysis. The immediate consequence of this is, of course, that it is not clear if better models could have been obtained if some form of parameter selection and optimisation had been performed. Questions follow inevitably on the experiments themselves: specifically, are all algorithms being treated fairly, and is the exploratory phase sufficiently well-defined to allow the experiments to be replicated? In this paper, we investigate the use of parameter selection and optimisation techniques grouped under the study of experimental design. Screening and “response surface” methods determine, in turn, sensitive parameters and good values for these parameters. This combined use of parameter selection and response surface-driven optimisation has a long history of application in industrial engineering, and its role in ILP is investigated using two well-known benchmarks. The results suggest that computational overheads from this preliminary phase are not substantial, and that much can be gained, both on improving system performance and on enabling controlled experimentation, by adopting well-established procedures such as the ones proposed here.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bengio, Y.: Gradient based optimisation of hyperparameters. Neural Computation 12(8), 1889–1900 (2000)

    Article  Google Scholar 

  2. Bengio, Y., Grandvalet, Y.: No unbiased estimator of the variance of k-fold cross-validation. Journal of Machine Learning Research 5, 1089–1105 (2004)

    MathSciNet  Google Scholar 

  3. Box, G.E.P., Wilson, K.B.: On the Experimental Attainment of Optimum Conditions. Journal of the Royal Statistical Society, Series B (Methodological) 13(1), 1–45 (1951)

    MathSciNet  Google Scholar 

  4. Bratko, I., Muggleton, S.H.: Applications of Inductive Logic Programming. Communications of the ACM 38(11), 65–70 (1995)

    Article  Google Scholar 

  5. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth, Belmont (1984)

    Google Scholar 

  6. Dzeroski, S.: Relational Data Mining Applications: An Overview. In: Dzeroski, S., Lavrac, N. (eds.) Relational Data Mining, pp. 339–360. Springer, Berlin (2001)

    Google Scholar 

  7. King, R.D., Muggleton, S.H., Srinivasan, A., Sternberg, M.J.E.: Structure-activity relationships derived by machine learning: The use of atoms and their bond connectivities to predict mutagenicity by inductive logic programming. Proc. of the National Academy of Sciences 93, 438–442 (1996)

    Article  Google Scholar 

  8. King, R.D., Srinivasan, A.: Prediction of rodent carcinogenicity bioassays from molecular structure using inductive logic programming. Environmental Health Perspectives 104(5), 1031–1040 (1996)

    Article  Google Scholar 

  9. Montgomery, D.C.: Design and Analysis of Experiments, 5th edn. John Wiley, New York (2005)

    MATH  Google Scholar 

  10. Srinivasan, A.: Four Suggestions and a Rule Concerning the Application of ILP. In: Lavrac, N., Dzeroski, S. (eds.) Relational Data Mining, pp. 365–374. Springer, Berlin (2001)

    Google Scholar 

  11. Steppan, D.D., Werner, J., Yeater, R.P.: Essential Regression and Experimental Design for Chemists and Engineers (1998), http://www.jowerner.homepage.t-online.de/download.htm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Srinivasan, A., Ramakrishnan, G. (2010). Parameter Screening and Optimisation for ILP Using Designed Experiments. In: De Raedt, L. (eds) Inductive Logic Programming. ILP 2009. Lecture Notes in Computer Science(), vol 5989. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13840-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13840-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13839-3

  • Online ISBN: 978-3-642-13840-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics