Skip to main content

Deriving Spatio-temporal Query Results in Sensor Networks

  • Conference paper
Scientific and Statistical Database Management (SSDBM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6187))

Abstract

Tracking moving objects in relation to regions of interest, e.g., for pollution control or habitat monitoring, is an important application of Sensor Networks (SN). Research on Moving Object Databases has resulted in sophisticated mechanisms for querying moving objects and regions declaratively. Applying these results to SN in a straightforward way is not possible: First, sensor nodes typically can only determine that an object is in their vicinity, but not the exact position. Second, nodes may fail, or areas may be unobservable. All this is problematic because the evaluation of spatio-temporal queries requires precise knowledge about object positions. In this paper we specify meaningful results of spatio-temporal queries, given those SN-specific phenomena, and say how to derive them from object detections by sensor nodes. We distinguish between objects which definitely fulfill the query and those that could possibly do so, but where those inaccuracies are in the way of a definite answer. We study both spatio-temporal predicates as well as spatio-temporal developments, i.e., sequences of predicates describing complex movement patterns of objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mainwaring, A., et al.: Wireless sensor networks for habitat monitoring. In: WSNA 2009, pp. 88–97. ACM, New York (2002)

    Chapter  Google Scholar 

  2. Cerpa, A., et al.: Habitat monitoring: Application driver for wireless communications technology. SIGCOMM CCR 31(suppl. 2), 20–41 (2001)

    Article  Google Scholar 

  3. Liu, N., et al.: Long-term animal observation by wireless sensor networks with sound recognition. In: Liu, B., Bestavros, A., Du, D.-Z., Wang, J. (eds.) WASA 2009. LNCS, vol. 5682, pp. 1–11. Springer, Heidelberg (2009)

    Google Scholar 

  4. Langendorfer, P., et al.: A Wireless Sensor Network Reliable Architecture for Intrusion Detection. In: NGI, pp. 189–194 (2008)

    Google Scholar 

  5. Ding, J., Cheung, S.Y., Tan, C.W., Varaiya, P.: Signal Processing of Sensor Node Data for Vehicle Detection. In: IEEE ITSC, pp. 70–75 (2004)

    Google Scholar 

  6. Arora, A., et al.: A line in the sand: A wireless sensor network for target detection, classification, and tracking. Computer Networks 46(5), 605–634 (2004)

    Article  Google Scholar 

  7. Yao, Y., Gehrke, J.: The Cougar Approach to In-Network Query Processing in Sensor Networks. SIGMOD Rec. 31(3), 9–18 (2002)

    Article  Google Scholar 

  8. Madden, S., et al.: TinyDB: An Acquisitional Query Processing System for Sensor Networks. ACM TODS 30(1), 122–173 (2005)

    Article  MathSciNet  Google Scholar 

  9. Güting, R.H., et al.: A Foundation for Representing and Querying Moving Objects. ACM TODS 25(1), 1–42 (2000)

    Article  Google Scholar 

  10. Erwig, M., Schneider, M.: Spatio-temporal predicates. IEEE TKDE 14(4), 881–901 (2002)

    Google Scholar 

  11. XBow Technology Inc.: Wireless Sensor Network Platforms (2010), http://www.xbow.com

  12. SUN Microsystems Inc.: Small Programmable Object Technology (2010), http://www.sunspotworld.com

  13. Braunling, R., Jensen, R.M., Gallo, M.A.: Acoustic Target Detection, Tracking, Classification, and Location in a Multiple-Target Environment. In: SPIE, vol. 3081, pp. 57–66 (1997)

    Google Scholar 

  14. Gaal, S.: Point set topology. Academic Press, London (1964)

    MATH  Google Scholar 

  15. Egenhofer, M.J., Franzosa, R.D.: Point set topological relations. IJGIS 5, 161–174 (1991)

    Article  Google Scholar 

  16. Clementini, E., et al.: A Small Set of Formal Topological Relationships Suitable for End-User Interaction. In: SSD, London, UK, pp. 277–295. Springer, Heidelberg (1993)

    Google Scholar 

  17. Knuth Jr., D.E., Pratt, V.R.: Fast Pattern Matching in Strings. SIAM Journal on Computing 6(2), 323–350 (1977)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bestehorn, M., Böhm, K., Bradley, P., Buchmann, E. (2010). Deriving Spatio-temporal Query Results in Sensor Networks. In: Gertz, M., Ludäscher, B. (eds) Scientific and Statistical Database Management. SSDBM 2010. Lecture Notes in Computer Science, vol 6187. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13818-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13818-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13817-1

  • Online ISBN: 978-3-642-13818-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics