Advertisement

Lattice Associative Memories for Segmenting Color Images in Different Color Spaces

  • Gonzalo Urcid
  • Juan Carlos Valdiviezo-N.
  • Gerhard X. Ritter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6077)

Abstract

This paper describes a technique for segmenting color images in different color spaces based on lattice auto-associative memories. Basically, the min- or max auto-associative memories can be used to determine tetrahedra enclosing different subsets of image pixels. The column vectors of either memory, additively scaled, correspond to the most saturated color pixels that are the vertices of a specified tetrahedron, and any other color pixel can be considered a linear mixture of these points. The non-negative least square method is used to linearly unmix color pixels and provides the fundamental step in the unsupervised segmentation of a given input color image. We give illustrative examples to demonstrate the effectiveness of our method as well as the color separation results in four different color spaces.

Keywords

Color Image Color Space Color Pixel Saturated Color Color Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cheng, H.D., Jain, X.H., Sun, Y., Wang, J.: Color Image Segmentation: Advances and Prospects. Pattern Rec. 34(12), 2259–2281 (2001)zbMATHCrossRefGoogle Scholar
  2. 2.
    Celenk, M., de Haag, M.U.: Optimal Thresholding for Color Images. In: Proc. SPIE, Nonlinear Image Processing IX, San Jose, CA, vol. 3304, pp. 250–259 (1998)Google Scholar
  3. 3.
    Shafarenko, L., Petrou, H., Kittler, J.: Histogram-based Segmentation in a Perceptually Uniform Color Space. IEEE Trans. on Image Processing 7(9), 1354–1358 (1998)CrossRefGoogle Scholar
  4. 4.
    Meyer, F.: Color Image Segmentation. In: Proc. IEEE 4th Inter. Conf. on Image Processing and its Applications, pp. 303–306 (1992)Google Scholar
  5. 5.
    Crespo, J., Schafer, R.W.: The Flat Zone Approach and Color Images. In: Serra, J., Soille, P. (eds.) Mathematical Morphology and Its Applications to Image Processing, pp. 85–92. Kluwer Academic, Dordrecht (1994)Google Scholar
  6. 6.
    Liu, J., Yang, Y.-H.: Multiresolution Color Image Segmentation. IEEE Trans. on Pattern Anal. and Mach. Int. 16(7), 689–700 (1994)CrossRefGoogle Scholar
  7. 7.
    Park, S.H., Yun, I.D., Lee, S.U.: Color Image Segmentation based on 3-D Clustering: Morphological Approach. Pattern Rec. 31(8), 1061–1076 (1998)CrossRefGoogle Scholar
  8. 8.
    Géraud, T., Strub, P.-Y., Darbon, J.: Color Image Segmentation Based on Automatic Morphological Clustering. In: Proc. IEEE Inter. Conf. on Image Processing, Thessaloniki, Greece, vol. 3, pp. 70–73 (2001)Google Scholar
  9. 9.
    Essaqote, H., Zahid, N., Haddaoui, I., Ettouhami, A.: Color Image Segmentation Based on New Clustering Algorithm and Fuzzy Eigenspace. Research Journal of Applied Sciences 2(8), 853–858 (2007)Google Scholar
  10. 10.
    Koschan, A., Abidi, M.: Digital Color Image Processing, pp. 149–174. John Wiley & Sons, Hoboken (2008)Google Scholar
  11. 11.
    Ritter, G.X., Gader, P.: Fixed Points of Lattice Transforms and Lattice Associative Memories. In: Hawkes, P. (ed.) Advances in Imaging and Electron Physics, vol. 144, pp. 165–242. Elsevier, San Diego (2006)Google Scholar
  12. 12.
    Ritter, G.X., Urcid, G., Schmalz, M.S.: Autonomous Single-Pass Endmember Approximation using Lattice Auto-Associative Memories. Neurocomputing 72(10-12), 2101–2110 (2009)CrossRefGoogle Scholar
  13. 13.
    Urcid, G., Valdiviezo-N., J.C.: Color Image Segmentation Based on Lattice Auto-Associative Memories. In: Proc. 13th IASTED Inter. Conf. on Artificial Intelligence and Soft Computing, pp. 166–173 (2009)Google Scholar
  14. 14.
    Zhang, C., Wang, P.: A New Method for Color Image Segmentation Based on Intensity and Hue Clustering. In: Proc. 15th IEEE Inter. Conf. on Pattern Recognition, vol. 3, pp. 613–616 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Gonzalo Urcid
    • 1
  • Juan Carlos Valdiviezo-N.
    • 1
  • Gerhard X. Ritter
    • 2
  1. 1.Optics DepartmentINAOETonantzintlaMexico
  2. 2.CISE DepartmentUniversity of FloridaGainesvilleUSA

Personalised recommendations