Support Vector Regression Algorithms in the Forecasting of Daily Maximums of Tropospheric Ozone Concentration in Madrid

  • E. G. Ortiz-García
  • S. Salcedo-Sanz
  • A. M. Pérez-Bellido
  • J. Gascón-Moreno
  • A. Portilla-Figueras
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6077)


In this paper we present the application of a support vector regression algorithm to a real problem of maximum daily tropospheric ozone forecast. The support vector regression approach proposed is hybridized with an heuristic for optimal selection of hyper-parameters. The prediction of maximum daily ozone is carried out in all the station of the air quality monitoring network of Madrid. In the paper we analyze how the ozone prediction depends on meteorological variables such as solar radiation and temperature, and also we perform a comparison against the results obtained using a multi-layer perceptron neural network in the same prediction problem.


Support Vector Machine Support Vector Regression Meteorological Variable Multilayer Perceptron Tropospheric Ozone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Massart, B., Kvalheim, O.M.: Ozone forecasting from meteorological variables: Part I. Predictive models by moving window and partial least squares regression. Chemometrics and Intelligent Laboratory Systems 42(1-2), 179–190 (1998)CrossRefGoogle Scholar
  2. 2.
    Massart, B., Kvalheim, O.M.: Ozone forecasting from meteorological variables: Part II. Daily maximum ground-level ozone concentration from local weather forecasts. Chemometrics and Intelligent Laboratory Systems 42(1-2), 191–197 (1998)CrossRefGoogle Scholar
  3. 3.
    Garfias-Vázquez, M., Audry-Sánchez, J., Garfias-Ayala, F.J.: Tropospheric ozone prediction in Mexico city. Journal of the Mexican Chemistry Society 49(1), 2–9 (2005)Google Scholar
  4. 4.
    Brunelli, U., Piazza, V., Pignato, L., Sorbello, F., Vitabile, S.: Two-days ahead prediction of daily maximum concentrations of SO 2, O 3, PM 10, NO 2, CO in the urban area of Palermo, Italy. Atmospheric Environment 41, 2967–2995 (2007)CrossRefGoogle Scholar
  5. 5.
    Wang, D., Lu, W.: Ground-level ozone prediction using multilayer perceptron trained with an innovative hybrid approach. Ecological Modelling 198, 332–340 (2006)CrossRefGoogle Scholar
  6. 6.
    Wang, W., Men, C., Lu, W.: Online prediction model based on support vector machine. Neurocomputing 71(4-6), 550–558 (2008)CrossRefGoogle Scholar
  7. 7.
    Lu, W., Wang, D.: Ground-level ozone prediction by support vector machine approach with a cost-sensitive classification scheme. Science of the Total Environment 395, 109–116 (2008)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Mohandes, M.A., Halawani, T.O., Rehman, S., Hussain, A.A.: Support vector machines for wind speed prediction. Renewable Energy 29(6), 939–947 (2004)CrossRefGoogle Scholar
  9. 9.
    Luan, F., Xue, C., Zhang, R., Zhao, C., Liu, M., Hu, Z., Fan, B.: Prediction of retention time of a variety of volatile organic compounds based on the heuristic method and support vector machine. Analytica Chimica Acta 537(1-2), 101–110 (2005)CrossRefGoogle Scholar
  10. 10.
    Lu, W.-Z., Wang, W.-J.: Potential assessment of the support vector machine method in forecasting ambient air pollutant trends. Chemosphere 59(5), 693–701 (2005)CrossRefGoogle Scholar
  11. 11.
    Osowski, S., Garanty, K.: Forecasting of the daily meteorological pollution using wavelets and support vector machine. Engineering Applications of Artificial Intelligence 20(6), 745–755 (2007)CrossRefGoogle Scholar
  12. 12.
    Ortiz-García, E., Salcedo-Sanz, S., Pérez-Bellido, A., Portilla-Figueras, J.A.: Improving the training time of support vector regression algorithms through novel hyper-parameters search space reductions. Neurocomputing 72, 3683–3691 (2009)CrossRefGoogle Scholar
  13. 13.
    Smola, A.J., Schlkopf, B.: A tutorial on support vector regression. Statistics and Computing (1998)Google Scholar
  14. 14.
    Hoek, G., Beelen, R., de Hoogh, K., Vienneau, D., Gulliver, J., Fischer, P., Briggs, D.: A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmospheric Environment 42, 7561–7578 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • E. G. Ortiz-García
    • 1
  • S. Salcedo-Sanz
    • 1
  • A. M. Pérez-Bellido
    • 1
  • J. Gascón-Moreno
    • 1
  • A. Portilla-Figueras
    • 1
  1. 1.Universidad de AlcaláMadridSpain

Personalised recommendations