Advertisement

Evolutionary Learning Using a Sensitivity-Accuracy Approach for Classification

  • Javier Sánchez-Monedero
  • C. Hervás-Martínez
  • F. J. Martínez-Estudillo
  • Mariano Carbonero Ruz
  • M. C. Ramírez Moreno
  • M. Cruz-Ramírez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6077)

Abstract

Accuracy alone is insufficient to evaluate the performance of a classifier especially when the number of classes increases. This paper proposes an approach to deal with multi-class problems based on Accuracy (C) and Sensitivity (S). We use the differential evolution algorithm and the ELM-algorithm (Extreme Learning Machine) to obtain multi-classifiers with a high classification rate level in the global dataset with an acceptable level of accuracy for each class. This methodology is applied to solve four benchmark classification problems and obtains promising results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Provost, F., Fawcett, T.: Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions. In: Proc. of the 3rd International Conference on Knowledge Discovery and Data Mining, pp. 43–48 (1997)Google Scholar
  2. 2.
    Huang, G.B., Chen, L., Siew, C.K.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks 17(4), 879–892 (2006)CrossRefGoogle Scholar
  3. 3.
    Zhu, Q.Y., Qin, A., Suganthan, P., Huang, G.B.: Evolutionary extreme learning machine. Pattern Recognition 38(10), 1759–1763 (2005)zbMATHCrossRefGoogle Scholar
  4. 4.
    Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. of Global Opt. 11(4), 341–359 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Martínez-Estudillo, F., Gutiérrez, P., Hervás-Martínez, C., Fernández, J.: Evolutionary learning by a sensitivity-accuracy approach for multi-class problems. Accepted in the Proceedings of the 2008 IEEE Congress on Evolutionary Computation (CEC 2008), Hong Kong, China (2008)Google Scholar
  6. 6.
    Fernández, J., Martínez-Estudillo, F., Hervás, C., Gutiérrez, P.: Sensitivity versus accuracy in multi-class problems using memetic pareto evolutionary neural networks. IEEE Transacctions on Neural Networks (accepted, 2010)Google Scholar
  7. 7.
    Abbass, H.A.: Speeding up backpropagation using multiobjective evolutionary algorithms. Neural Computation 15(11), 2705–2726 (2003)zbMATHCrossRefGoogle Scholar
  8. 8.
    Ilonen, J., Kamarainen, J.K., Lampinen, J.: Differential evolution training algorithm for feed-forward neural networks. Neural Process. Lett. 17(1), 93–105 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Javier Sánchez-Monedero
    • 1
  • C. Hervás-Martínez
    • 1
  • F. J. Martínez-Estudillo
    • 2
  • Mariano Carbonero Ruz
    • 2
  • M. C. Ramírez Moreno
    • 2
  • M. Cruz-Ramírez
    • 1
  1. 1.Department of Computer Science and Numerical AnalysisUniversity of CórdobaSpain
  2. 2.Department of Management and Quantitative MethodsETEASpain

Personalised recommendations