Hybrid Color Space Transformation to Visualize Color Constancy

  • Ramón Moreno
  • José Manuel López-Guede
  • Alicia d’Anjou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6077)


Color constancy and chromatic edge detection are fundamental problems in artificial vision. In this paper we present a way to provide a visualization of color constancy that works well even in dark scenes where such humans and computer vision algorithms have hard problems due to the noise. The method is an hybrid and non linear transform of the RGB image based on the assignment of the chromatic angle as the luminosity value in the HSV space. This chromatic angle is defined on the basis of the dichromatic reflection model, having thus a physical model supporting it.


Color Constancy Chromatic Edge Color Segmentation Illumination Transform 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barbur, J.L., Spang, K.: Colour constancy and conscious perception of changes of illuminant. Neuropsychologia 46, 853–863 (2008); PMID: 18206187CrossRefGoogle Scholar
  2. 2.
    Cheng, H.D., Jiang, X.H., Sun, Y., Wang, J.: Color image segmentation: advances and prospects. Pattern Recognition 34(12), 2259–2281 (2001)zbMATHCrossRefGoogle Scholar
  3. 3.
    Garcia-Sebastian, M., Gonzalez, A.I., Grana, M.: An adaptive field rule for non-parametric mri intensity inhomogeneity estimation algorithm. Neurocomputing 72(16-18), 3556–3569 (2009); Financial Engineering; Computational and Ambient Intelligence (IWANN 2007)CrossRefGoogle Scholar
  4. 4.
    Gijsenij, A., Gevers, T., van de Weijer, J.: Generalized gamut mapping using image derivative structures for color constancy. International Journal of Computer Vision 86(2), 127–139 (2010)CrossRefGoogle Scholar
  5. 5.
    Graña, M., Torrealdea, F.J.: Hierarchically structured systems. European Journal of Operational Research 25, 20–26 (1986)CrossRefGoogle Scholar
  6. 6.
    Choi, Y.-J., Yoon, K.-J., Kweon, I.S.: Illuminant chromaticity estimation using dichromatic slope and dichromatic line space. In: Korea-Japan Joint Workshop on Frontiers of Computer Vision, FCV, pp. 219–224 (2005)Google Scholar
  7. 7.
    Lezoray, O., Charrier, C.: Color image segmentation using morphological clustering and fusion with automatic scale selection. Pattern Recognition Letters 30(4), 397–406 (2009)CrossRefGoogle Scholar
  8. 8.
    Shafer, S.A.: Using color to separate reflection components. Color Research and Aplications 10, 43–51 (1984)Google Scholar
  9. 9.
    Shen, H.-L., Zhang, H.-G., Shao, S.-J., Xin, J.H.: Chromaticity-based separation of reflection components in a single image. Pattern Recognition 41, 2461–2469 (2008)zbMATHCrossRefGoogle Scholar
  10. 10.
    Skaff, S., Arbel, T., Clark, J.J.: A sequential bayesian approach to color constancy using non-uniform filters. Computer Vision and Image Understanding 113(9), 993–1004 (2009)CrossRefGoogle Scholar
  11. 11.
    Tan, R.T., Nishino, K., Ikeuchi, K.: Color constancy through inverse-intensity chromaticity space. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 21(3), 321–334 (2004)CrossRefGoogle Scholar
  12. 12.
    Tan, R.T., Nishino, K., Ikeuchi, K.: Separating reflection components based on chromaticity and noise analysis. IEEE Trans. Pattern Anal. Mach. Intell. 26(10), 1373–1379 (2004)CrossRefGoogle Scholar
  13. 13.
    Tan, R.T., Ikeuchi, K.: Reflection components decomposition of textured surfaces using linear basis functions. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, June 20-25, vol. 1, pp. 125–131 (2005)Google Scholar
  14. 14.
    Tan, T.T., Nishino, K., Ikeuchi, K.: Illumination chromaticity estimation using inverse-intensity chromaticity space. In: Proceedings of 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 18-20, vol. 1, pp. I-673–I-680 (2003)Google Scholar
  15. 15.
    Yoon, K.-J., Chofi, Y.J., Kweon, I.-S.: Dichromatic-based color constancy using dichromatic slope and dichromatic line space. In: IEEE International Conference on Image Processing, ICIP 2005, September 11-14, vol. 3, pp. III–960–3 (2005)Google Scholar
  16. 16.
    Yoon, K.-J., Choi, Y., Kweon, I.S.: Fast separation of reflection components using a specularity-invariant image representation. In: IEEE International Conference on Image Processing, October 8-11, pp. 973–976 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ramón Moreno
    • 1
  • José Manuel López-Guede
    • 1
  • Alicia d’Anjou
    • 1
  1. 1.Computational Intelligence GroupUniversidad del País Vasco, UPV/EHU 

Personalised recommendations