Advertisement

Integrating Information Extraction Agents into a Tourism Recommender System

  • Sergio Esparcia
  • Víctor Sánchez-Anguix
  • Estefanía Argente
  • Ana García-Fornes
  • Vicente Julián
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6077)

Abstract

Recommender systems face some problems. On the one hand information needs to be maintained updated, which can result in a costly task if it is not performed automatically. On the other hand, it may be interesting to include third party services in the recommendation since they improve its quality. In this paper, we present an add-on for the Social-Net Tourism Recommender System that uses information extraction and natural language processing techniques in order to automatically extract and classify information from the Web. Its goal is to maintain the system updated and obtain information about third party services that are not offered by service providers inside the system.

Keywords

recommender systems information agents 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ricci, F., Werthner, H.: Case-based querying for travel planning recommendation. Information Technology and Tourism 4(3-4), 215–226 (2002)Google Scholar
  2. 2.
    Loh, S., Lorenzi, F., Saldana, R., Litchnow, D.: A tourism recommender system based on collaboration and text analysis. Information Technology and Tourism 6, 157–165Google Scholar
  3. 3.
    Fesenmaier, D., Ricci, F., Schaumlechner, E., Wober, K., Zanella, C.: Dietorecs: Travel advisory for multiple decision styles. In: Proc. of the ENTER 2003, pp. 232–242 (2003)Google Scholar
  4. 4.
    Herlocker, J., Konstan, J.A.: Content-independent task-focused recommendation. IEEE Internet Comput. 5, 40–47 (2001)CrossRefGoogle Scholar
  5. 5.
    Rudstrom, A., Fagerberg, P.: Socially enhaced travel booking: a case study. Information Technology and Tourism 6(3)Google Scholar
  6. 6.
    Sebastia, L., Garcia, I., Onaindia, E., Guzman, C.: E-tourism: A tourist recommendation and planning adaptation. Int. J. Artif. Intell. Tools 18(5), 717–738 (2009)CrossRefGoogle Scholar
  7. 7.
    Lopez, J.S., Bustos, F.A., Julian, V., Rebollo, M.: Developing a multiagent recommender system: A case study in tourism industry. International Transactions on Systems Science and Applications 4, 206–212 (2008)Google Scholar
  8. 8.
    Flesca, S., Manco, G., Masciari, E., Rende, E., Tagarelli, A.: Web wrapper induction: a brief survey. AI Commun. 17(2), 57–61 (2004)Google Scholar
  9. 9.
    Kushmerick, N., Thomas, B.: Adaptive information extraction: Core technologies for information agents. In: Klusch, M., Bergamaschi, S., Edwards, P., Petta, P. (eds.) Intelligent Information Agents. LNCS (LNAI), vol. 2586, pp. 79–103. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    John Wilbur, W., Sirotkin, K.: The automatic identification of stop words. J. Inf. Sci. 18(1), 45–55 (1992)CrossRefGoogle Scholar
  11. 11.
    Yang, Y.: Noise reduction in a statistical approach to text categorization. In: Proc. of the SIGIR 1995, pp. 256–263 (1995)Google Scholar
  12. 12.
    Miller, G.A.: WordNet: a lexical database for English. ACM Commun. 38(11), 41 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sergio Esparcia
    • 1
  • Víctor Sánchez-Anguix
    • 1
  • Estefanía Argente
    • 1
  • Ana García-Fornes
    • 1
  • Vicente Julián
    • 1
  1. 1.Grupo de Tecnología Informática - Inteligencia Artifical, Departamento de Sistemas Informáticos y ComputaciónUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations