Hybrid Approach for the Public Transportation Time Dependent Orienteering Problem with Time Windows

  • Ander Garcia
  • Olatz Arbelaitz
  • Pieter Vansteenwegen
  • Wouter Souffriau
  • Maria Teresa Linaza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6077)


The Time Dependent Orienteering Problem with Time Windows (TDOPTW) consists of a set of locations with associated time windows and scores. Visiting a location allows to collect its score as a reward. Traveling time between locations varies depending on the leave time. The objective is to obtain a route that maximizes the obtained score within a limited amount of time. In this paper we target the use of public transportation in a city, where users may move on foot or by public transportation. The approach can also be applied to the logistic sector, for example to the multimodal freight transportation. We apply an hybrid approach to tackle the problem. Experimental results for the city of San Sebastian show we are able to obtain valid routes in real-time.


Travel Time Hybrid Approach Public Transportation Transportation Mode Iterate Local Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chiu, D.K.W., Lee, O.K.F., Leung, H.-F., Au, E.W.K., Wong, M.C.W.: A multi-modal agent based mobile route advisory system for public transport network. In: Proceedings of the 38th Annual Hawaii International Conference on System Sciences, HICSS 2005, p. 92.2 (2005)Google Scholar
  2. 2.
    Delling, P.: Engineering and Augmenting Route Planning Algorithms. PhD thesis, Fakultat fur Informatik Universitat Fridericiana zu Karlsruhe (2009)Google Scholar
  3. 3.
    Ding, B., Yu, J.X., Qin, L.: Finding time-dependent shortest paths over large graphs. In: EDBT 2008: Proceedings of the 11th International Conference on Extending Database Technology, pp. 205–216. ACM, New York (2008)Google Scholar
  4. 4.
    Fomin, F.V., Lingas, A.: Approximation algorithms for time-dependent orienteering. Information Processing Letters 83(2), 57–62 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Garcia, A., Linaza, M.T., Arbelaitz, O., Vansteenwegen, P.: Intelligent routing system for a personalised electronic tourist guide. In: Information and Communication Technologies in Tourism 2009, Amsterdam, The Netherlands, pp. 185–197. Springer, Wien (2009)Google Scholar
  6. 6.
    Graña, M., Torrealdea, F.J.: Hierarchically structured systems. European Journal of Operational Research 25, 20–26 (1986)CrossRefGoogle Scholar
  7. 7.
    Lourenço, H.R., Martin, O., Stutzle, T.: Iterated local search. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 321–353. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  8. 8.
    Montemanni, R., Gambardella, L.M.: Ant colony system for team orienteering problems with time windows. Foundations of Computing and Decision Sciences (accepted, 2009)Google Scholar
  9. 9.
    Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Efficient models for timetable information in public transportation systems. Journal of Experimental Algorithmics 12, 1–39 (2008)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Righini, G., Salani, M.: Decremental state space relaxation strategies and initialization heuristics for solving the orienteering problem with time windows with dynamic programming. Computers & Operations Research 36(4), 1191–1203 (2009)zbMATHCrossRefGoogle Scholar
  11. 11.
    Tricoire, F., Romauch, M., Doerner, K.F., Hartl, R.F.: Heuristics for the multi-period orienteering problem with multiple time windows. Computers & Operations Research 37(2), 351–367 (2010)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Tumas, G., Ricci, F.: Personalized mobile city transport advisory system. In: Information and Communication Technologies in Tourism 2009, Amsterdam, The Netherlands, pp. 173–183. Springer, Wien (2009)Google Scholar
  13. 13.
    Vansteenwegen, P.: Planning in tourism and public transportation. PhD thesis, Centre for Industrial Management, Katholieke Universiteit Leuven, Belgium (2008)Google Scholar
  14. 14.
    Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., Van Oudheusden, D.: Iterated local search for the team orienteering problem with time windows. Computers & Operations Research 36(12), 3281–3290 (2009)zbMATHCrossRefGoogle Scholar
  15. 15.
    Yamada, T., Russ, B.F., Castro, J., Eiichi, T.: Designing multimodal freight transport networks: A heuristic approach and applications. Transportation Science 43(2), 129–143 (2009)CrossRefGoogle Scholar
  16. 16.
    Zenker, B., Ludwig, B., Schrader, J.: Rose - assisting pedestrians to find preferred events and comfortable public transport connections. In: ACM Mobility Conference 2009. ACM, New York (accepted 2009)Google Scholar
  17. 17.
    Zografos, K.G., Androutsopoulos, K.N.: Algorithms for itinerary planning in multimodal transportation networks. IEEE Transactions on Intelligent Transportation Systems 9(1), 175–184 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ander Garcia
    • 1
  • Olatz Arbelaitz
    • 2
  • Pieter Vansteenwegen
    • 3
  • Wouter Souffriau
    • 3
  • Maria Teresa Linaza
    • 1
  1. 1.VicomtechSpain
  2. 2.University of the Basque CountrySpain
  3. 3.Katholieke Universiteit LeuvenBelgium

Personalised recommendations