Advertisement

A Cultural Algorithm for the Urban Public Transportation

  • Laura Cruz Reyes
  • Carlos Alberto Ochoa Ortíz Zezzatti
  • Claudia Gómez Santillán
  • Paula Hernández Hernández
  • Mercedes Villa Fuerte
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6077)

Abstract

In the last years the population of Leon City, located in the state of Guanajuato in Mexico, has been considerably increasing, causing the inhabitants to waste most of their time with public transportation. As a consequence of the demographic growth and traffic bottleneck, users deal with the daily problem of optimizing their travel so that to get to their destination on time. To give a solution to this problem of obtaining an optimized route between two points in a public transportation, a method based on the cultural algorithms technique is proposed. Cultural algorithms are used in the generated knowledge in a set of time periods for a same population, using a belief space. These types of algorithms are a recent creation. The proposed method seeks a path that minimizes the time of traveling and the number of transfers. The results of the experiment show that the technique of the cultural algorithms is applicable to these kinds of multi-objective problems.

Keywords

Cultural Algorithms Evolutionary Algorithms Optimization Transport Population Beliefs Agent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reynolds, R.G., et al.: Cultural Algorithms: Knowledge-driven engineering optimization via weaving a social fabric as an enhanced influence function. In: IEEE Congress on Evolutionary Computation 2008 (2008)Google Scholar
  2. 2.
    Ochoa, A.: Algoritmos Culturales. Gaceta Ideas Concyteg 3(31) (2008)Google Scholar
  3. 3.
    Becerra, R.L.: Doctoral thesis: Use of Domain Information to Improve the Performance of an. In: Center for Research and Advanced Studies of The National Polytechnic Institute of Mexico, Computer Science Department, Mexico City, Mexico (June 2007)Google Scholar
  4. 4.
    Ochoa, A., et al.: Evolving Optimization to Improve Diorama’s Representation using a Mosaic Image. Journal of Computers 4(8) (August 2009)Google Scholar
  5. 5.
    Becerra, R.L., et al.: Use of Domain Information to Improve the Performance of an Evolutionary Computation. In: Genetic And Evolutionary Computation Conference. Proceedings of the 2005 Workshops on Genetic and Evolutionary Computation (2005)Google Scholar
  6. 6.
    Ochoa, A., et al.: Sistema de Seguridad Pública basado en inteligencia artificial. Publicación Trimestral de ADIAT, Año VIII, Núm. 33, Enero –Marzo de (2009)Google Scholar
  7. 7.
    Reynolds, R.G., Kobti, Z., Kohler, T.: Agent-Based Modeling of Cultural Change in Swarm Using Cultural Algorithms. In: Proceedings of SWARMFEST 2004, May 9-11. University of Michigan, Ann Arbor (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Laura Cruz Reyes
    • 1
  • Carlos Alberto Ochoa Ortíz Zezzatti
    • 2
  • Claudia Gómez Santillán
    • 1
    • 3
  • Paula Hernández Hernández
    • 1
  • Mercedes Villa Fuerte
    • 1
  1. 1.División de Estudios de Posgrado e Investigación Juventino Rosas y Jesús Urueta s/n, Col. Los mangosInstituto Tecnológico de Ciudad MaderoCd.MaderoMéxico
  2. 2.Instituto de Ingeniería y TecnologíaUniversidad Autónoma de Ciudad JuárezCd. JuárezMéxico
  3. 3.Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada. Carretera Tampico-Puerto Industrial Altamira, Km.14.5Instituto Politécnico NacionalAltamiraMéxico

Personalised recommendations