Advertisement

Agents and Computer Vision for Processing Stereoscopic Images

  • Sara Rodríguez
  • Fernando de la Prieta
  • Dante I. Tapia
  • Juan M. Corchado
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6077)

Abstract

This paper presents a Multi-Agent System (MAS) that implements techniques of Computer Vision for processing stereoscopic images by using stereo cameras. The MAS focuses on detecting people and their behavior through a two-phase method. In the first phase, the MAS creates a model of the environment by using a disparity map. It can be constructed in real time, even if there are moving objects in the area (such as people passing by). In the second phase, the MAS is able to detect people and their behavior by combining a series of techniques such as Sum of Absolute Differences (SAD) or Gradient Orientation Histograms (HOG). The preliminary results and conclusions after several experiments performed on real scenarios are described in this paper.

Keywords

Multi-Agent Systems Computer Vision Stereo Processing People Detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)CrossRefGoogle Scholar
  2. 2.
    Castanedo, F., García, J., Patricio, M.A., Molina, J.M.: Designing a Visual Sensor Network Using a Multi-agent Architecture. ASC 978-3-642-00486-5, pp. 430–439 (2009)Google Scholar
  3. 3.
    Corchado, J.M., Glez-Bedia, M., de Paz, Y., Bajo, J., de Paz, J.F.: Replanning mechanism for deliberative agents in dynamic changing environments. Computational Intelligence 24(2), 77–107 (2008)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: IEEE Conference Computer Vision and Pattern Recognition, USA, pp. 886–893 (2005)Google Scholar
  5. 5.
    Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms of flow and appearance. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 428–441. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Dhond, U.R., Aggarwal, J.K.: Structure From Stereo - A Review. IEEE Trans. on Systems, Man and Cybernetics 19(6) (November/December 1989)Google Scholar
  7. 7.
    Harville, M.: Stereo person tracking with adaptive plan-view templates of height and occupancy statistics. Image and Vision Computing 2, 127–142 (2004)CrossRefGoogle Scholar
  8. 8.
    Lindeberg, T.: Feature detection with automatic scale selection. International Journal of Computer Vision 30, 77–116 (1998)Google Scholar
  9. 9.
    López-Valles, et al.: Revista Iberoamericana de Inteligencia Artificial 9(27), 35–62 (2005), ISSN: 1137-3601Google Scholar
  10. 10.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: Int. Conf. on Computer Vision, vol. 2, pp. 1150–1157 (1999), doi:10.1109/ICCCV.1999.790410Google Scholar
  11. 11.
    Marr, D., Poggio, T.: A computational theory of human stereo vision. Proc. R. Soc. Lond., 301–328 (1979)Google Scholar
  12. 12.
    Nazlı y Pınar Histogram of oriented rectangles: A new pose descriptor for human action recognition. Image and Vision Computing 27, 1515–1526 (2009) Google Scholar
  13. 13.
    Pedersoli, M., Gonzàlez, J., Chakraborty, B., Villanueva, J.J.: Enhancing Real-Time Human Detection Based on Histograms of Oriented Gradients. In: Computer Recognition Systems. ASC, vol. 2. Springer, Berlin (2007)Google Scholar
  14. 14.
    Point Grey Research Inc. (2009), http://www.ptgrey.com/
  15. 15.
    Rodríguez, S., De Paz, J.F., Bajo, J., Tapia, D.I., Pérez, B.: Stereo-MAS: Multi-Agent System for Image Stereo Processing. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009. LNCS (LNAI), vol. 5517, pp. 1256–1263. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Sobel, I., Feldman, G.: A 3x3 Isotropic Gradient Operator for Image Processing, presentado en la conferencia Stanford Artificial Project (1968)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sara Rodríguez
    • 1
  • Fernando de la Prieta
    • 1
  • Dante I. Tapia
    • 1
  • Juan M. Corchado
    • 1
  1. 1.University of SalamancaSalamancaSpain

Personalised recommendations