Skip to main content

Optimized Ensembles for Clustering Noisy Data

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 6073)

Abstract

Clustering analysis is an important step towards getting insight into new data. Ensemble procedures have been designed in order to obtain improved partitions of a data set. Previous work in domain, mostly empirical, shows that accuracy and a limited diversity are mandatory features for successful ensemble construction. This paper presents a method which integrates unsupervised feature selection with ensemble clustering in order to deliver more accurate partitions. The efficiency of the method is studied on real data sets.

Keywords

  • clustering
  • unsupervised feature selection
  • ensemble learning
  • crowding genetic algorithms

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-13800-3_23
  • Chapter length: 4 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-13800-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jain, A.K., Fred, A.: Data clustering using evidence accumulation. In: Proc. 16th International Conference on Pattern Recognition (ICPR 2002), vol. 4, pp. 276–280 (2002)

    Google Scholar 

  2. Fred, A., Jain, A.K.: Combining multiple clustering using evidence accumulation. IEEE Trans. Pattern Analysis and Machine Intelligence 6, 835–850 (2005)

    CrossRef  Google Scholar 

  3. Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research 3, 583–617 (2002)

    CrossRef  MathSciNet  Google Scholar 

  4. Hu, T., Zao, W., Wang, X., Li, Z.: A Comparison of Three Graph Partitioning Based Methods for Consensus Clustering. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp. 468–475. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  5. Zhou, Z.H., Tang, W.: Clusterer ensemble. Knowledge-Based Systems 19, 77–83 (2006)

    CrossRef  Google Scholar 

  6. Dudoit, S., Fridlyand, J.: Bagging to improve the accuracy of a clustering procedure. Bioinformatics (9), 1090–1099 (2003)

    CrossRef  Google Scholar 

  7. Topchy, A., Minaei, B., Jain, A., Punch, W.: Adaptive clustering ensembles. In: Proc. the International Conf. Pattern Recognition, pp. 272–275 (2004)

    Google Scholar 

  8. Topchy, A., Jain, A.K., Punch, W.: Combining multiple weak clusterings. In: Proc. the IEEE International Conf. Data Mining, pp. 331–338 (2003)

    Google Scholar 

  9. Hadjitodorov, S.T., Kuncheva, L.I., Todorova, L.P.: Moderate diversity for better cluster ensembles. Inf. Fusion 7(3), 264–275 (2006)

    CrossRef  Google Scholar 

  10. Handl, J., Knowles, J.: Feature Subset Selection in Unsupervised Learning via Multiobjective Optimization. International Journal of Computational Intelligence Research 2(3), 217–238 (2006)

    CrossRef  MathSciNet  Google Scholar 

  11. Vemuri, V., Cedeo, W.: Multi-Niche Crowding for Multimodal Search. In: Practical Handbook of Genetic Algorithms: New Frontiers, Ed. Lance Chambers, 2 (1995)

    Google Scholar 

  12. Breaban, M., Luchian, H.: Unsupervised Feature Weighting with Multi-Niche Crowding Genetic Algorithms. In: Proc. Genetic and Evolutionary Computation Conference, pp. 1163–1170. ACM, New York (2009)

    CrossRef  Google Scholar 

  13. Domeniconi, C., Al-Razgan, M.: Weighted Cluster Ensembles: Methods and Analysis. ACM Transactions on Knowledge Discovery from Data 2(4) (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Breaban, M.E. (2010). Optimized Ensembles for Clustering Noisy Data. In: Blum, C., Battiti, R. (eds) Learning and Intelligent Optimization. LION 2010. Lecture Notes in Computer Science, vol 6073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13800-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13800-3_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13799-0

  • Online ISBN: 978-3-642-13800-3

  • eBook Packages: Computer ScienceComputer Science (R0)