Abstract
Clustering analysis is an important step towards getting insight into new data. Ensemble procedures have been designed in order to obtain improved partitions of a data set. Previous work in domain, mostly empirical, shows that accuracy and a limited diversity are mandatory features for successful ensemble construction. This paper presents a method which integrates unsupervised feature selection with ensemble clustering in order to deliver more accurate partitions. The efficiency of the method is studied on real data sets.
Keywords
- clustering
- unsupervised feature selection
- ensemble learning
- crowding genetic algorithms
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Jain, A.K., Fred, A.: Data clustering using evidence accumulation. In: Proc. 16th International Conference on Pattern Recognition (ICPR 2002), vol. 4, pp. 276–280 (2002)
Fred, A., Jain, A.K.: Combining multiple clustering using evidence accumulation. IEEE Trans. Pattern Analysis and Machine Intelligence 6, 835–850 (2005)
Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research 3, 583–617 (2002)
Hu, T., Zao, W., Wang, X., Li, Z.: A Comparison of Three Graph Partitioning Based Methods for Consensus Clustering. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp. 468–475. Springer, Heidelberg (2006)
Zhou, Z.H., Tang, W.: Clusterer ensemble. Knowledge-Based Systems 19, 77–83 (2006)
Dudoit, S., Fridlyand, J.: Bagging to improve the accuracy of a clustering procedure. Bioinformatics (9), 1090–1099 (2003)
Topchy, A., Minaei, B., Jain, A., Punch, W.: Adaptive clustering ensembles. In: Proc. the International Conf. Pattern Recognition, pp. 272–275 (2004)
Topchy, A., Jain, A.K., Punch, W.: Combining multiple weak clusterings. In: Proc. the IEEE International Conf. Data Mining, pp. 331–338 (2003)
Hadjitodorov, S.T., Kuncheva, L.I., Todorova, L.P.: Moderate diversity for better cluster ensembles. Inf. Fusion 7(3), 264–275 (2006)
Handl, J., Knowles, J.: Feature Subset Selection in Unsupervised Learning via Multiobjective Optimization. International Journal of Computational Intelligence Research 2(3), 217–238 (2006)
Vemuri, V., Cedeo, W.: Multi-Niche Crowding for Multimodal Search. In: Practical Handbook of Genetic Algorithms: New Frontiers, Ed. Lance Chambers, 2 (1995)
Breaban, M., Luchian, H.: Unsupervised Feature Weighting with Multi-Niche Crowding Genetic Algorithms. In: Proc. Genetic and Evolutionary Computation Conference, pp. 1163–1170. ACM, New York (2009)
Domeniconi, C., Al-Razgan, M.: Weighted Cluster Ensembles: Methods and Analysis. ACM Transactions on Knowledge Discovery from Data 2(4) (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Breaban, M.E. (2010). Optimized Ensembles for Clustering Noisy Data. In: Blum, C., Battiti, R. (eds) Learning and Intelligent Optimization. LION 2010. Lecture Notes in Computer Science, vol 6073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13800-3_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-13800-3_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13799-0
Online ISBN: 978-3-642-13800-3
eBook Packages: Computer ScienceComputer Science (R0)