Skip to main content

Learning of Highly-Filtered Data Manifold Using Spectral Methods

  • Conference paper
Learning and Intelligent Optimization (LION 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6073))

Included in the following conference series:

Abstract

We propose a scheme for improving existing tools for recovering and predicting decisions based on singular value decomposition. Our main contribution is an investigation of advantages of using a functional, rather than linear approximation of the response of an unknown, complicated model. A significant attractive feature of the method is the demonstrated ability to make predictions based on a highly filtered data set. An adaptive high-order interpolation is constructed, that estimates the relative probability of each possible decision. The method uses a flexible nonlinear basis, capable of utilizing all the available information. We demonstrate that the prediction can be based on a very small fraction of the training set. The suggested approach is relevant in the general field of manifold learning, as a tool for approximating the response of the models based on many parameters. Our experiments show that the approach is at least competitive with other latent factor prediction methods, and that the precision of prediction grows with the increase in the order of the polynomial basis.

This work was supported by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brand, M.: Fast online svd revisions for lightweight recommender systems. In: Barbará, D., Kamath, C. (eds.) SDM. SIAM, Philadelphia (2003)

    Google Scholar 

  2. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Incremental singular value decomposition algorithms for highly scalable recommender systems. In: Fifth International Conference on Computer and Information Science, pp. 27–28 (2002)

    Google Scholar 

  3. Berkhin, P.: A survey of clustering data mining techniques. In: Grouping Multidimensional Data, pp. 25–71 (2006)

    Google Scholar 

  4. Kumar, V.: Data Mining for Scientific and Engineering Applications. Kluwer Academic Publishers, Norwell (2001)

    MATH  Google Scholar 

  5. Azar, Y., Fiat, A., Karlin, A., McSherry, F., Saia, J.: Spectral analysis of data. In: STOC 2001: Proceedings of the thirty-third annual ACM symposium on Theory of computing, pp. 619–626. ACM, New York (2001)

    Chapter  Google Scholar 

  6. Jacsó, P.: Google Scholar: the Pros and the Cons. Online Information Review 29(2), 208–214 (2005)

    Article  Google Scholar 

  7. Adamic, L., Adar, E.: How to search a social network. Social Networks 27(3), 187–203 (2005)

    Article  Google Scholar 

  8. Netflix prize problem, http://www.netflixprize.com/

  9. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowl. and Data Eng. 17(6), 734–749 (2005)

    Article  Google Scholar 

  10. Armstrong, J.S.: Principles of forecasting: A handbook for researchers and practitioners. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  11. Burke, R.: Knowledge-based recommender systems. In: Kent, A. (ed.) Encyclopedia of Library and Information Systems, Marcel Dekker, New York (2000)

    Google Scholar 

  12. Talwalkar, A., Kumar, S., Rowley, H.: Large-scale manifold learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  13. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  14. Roderick, O., Anitescu, M., Fischer, M., Yang, W.S.: Polynomial regression approaches using derivative information for uncertainty quantification. In: Nuclear Science and Engineering (2009) (to appear)

    Google Scholar 

  15. Roderick, O., Anitescu, M., Fischer, M., Yang, W.: Stochastic finite-element approach in nuclear reactor uncertainty quantification. American Nuclear Society Transactions 100, 317–318 (2009)

    Google Scholar 

  16. Herlocker, J., Konstan, J., Terveen, L., Riedl, J.: Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems 22, 5–53 (2004)

    Article  Google Scholar 

  17. Resnick, P., Varian, H.: Recommender systems. ACM Transactions on Information Systems 40, 56–58 (1997)

    Google Scholar 

  18. Gorsuch, R.L.: Factor Analysis. Erlbaum, Hillsdale (1983)

    Google Scholar 

  19. Dym, H.: Linear Algebra in Action. American Mathematical Society, Providence (2007)

    MATH  Google Scholar 

  20. Christopher, D., Manning, P.R., Schtze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  21. Berry, M.W., Dumais, S.T., O’Brien, G.W.: Using Linear Algebra for Intelligent Information Retrieval. SIAM Review 37(4), 573–595 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhang, S., Wang, W., Ford, J., Makedon, F.: Learning from incomplete ratings using non-negative matrix factorization. In: Proceedings of the SIAM Conference on Data Mining (2006)

    Google Scholar 

  23. Schein, A.I., Saul, L.K., Ungar, L.H.: A generalized linear model for principal component analysis of binary data. In: Proceedings of the 9th International Workshop on Artificial Intelligence and Statistics (2003)

    Google Scholar 

  24. Brand, M.: Incremental singular value decomposition of uncertain data with missing values. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 707–720. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  25. Ghanem, R., Spanos, P.: The Stochastic Finite Element Method: A Spectral Approach. Springer, New York (1991)

    Google Scholar 

  26. Bellomo, N., Lods, B., Reveli, R., Ridolfi, L.: Generalized Collocation Methods. Birkhauser, Basel (2008)

    Book  MATH  Google Scholar 

  27. Ghanem, R., Spanos, P.: Polynomial chaos in stochastic finite elements. Journal of Applied Mechanics 57, 197 (1990)

    Article  MATH  Google Scholar 

  28. Spanos, P., Ghanem, R.: Stochastic finite element expansion for random media. Journal of Engineering Mechanics 115(5), 1035–1053 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roderick, O., Safro, I. (2010). Learning of Highly-Filtered Data Manifold Using Spectral Methods. In: Blum, C., Battiti, R. (eds) Learning and Intelligent Optimization. LION 2010. Lecture Notes in Computer Science, vol 6073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13800-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13800-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13799-0

  • Online ISBN: 978-3-642-13800-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics