Skip to main content

Distance Functions, Clustering Algorithms and Microarray Data Analysis

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 6073)

Abstract

Distance functions are a fundamental ingredient of classification and clustering procedures, and this holds true also in the particular case of microarray data. In the general data mining and classification literature, functions such as Euclidean distance or Pearson correlation have gained their status of de facto standards thanks to a considerable amount of experimental validation. For microarray data, the issue of which distance function “works best” has been investigated, but no final conclusion has been reached. The aim of this paper is to shed further light on that issue. Indeed, we present an experimental study, involving several distances, assessing (a) their intrinsic separation ability and (b) their predictive power when used in conjunction with clustering algorithms. The experiments have been carried out on six benchmark microarray datasets, where the “gold solution” is known for each of them. We have used both Hierarchical and K-means clustering algorithms and external validation criteria as evaluation tools. From the methodological point of view, the main result of this study is a ranking of those measures in terms of their intrinsic and clustering abilities, highlighting also the correlations between the two. Pragmatically, based on the outcomes of the experiments, one receives the indication that Minkowski, cosine and Pearson correlation distances seems to be the best choice when dealing with microarray data analysis.

Keywords

  • Cluster Algorithm
  • Distance Function
  • Cluster Solution
  • Normalize Mutual Information
  • Microarray Data Analysis

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-13800-3_10
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-13800-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stanford microarray database, http://genome-www5.stanford.edu/

  2. D’haeseleer, P.: How does gene expression cluster work? Nature Biothecnology 23, 1499–1501 (2006)

    CrossRef  Google Scholar 

  3. Speed, T.P.: Statistical analysis of gene expression microarray data. Chapman & Hall/CRC (2003)

    Google Scholar 

  4. Handl, J., Knowles, J., Kell, D.B.: Computational cluster validation in post-genomic data analysis. Bioinformatics 21(15), 3201–3212 (2005)

    CrossRef  Google Scholar 

  5. Giancarlo, R., Scaturro, D., Utro, F.: Computational cluster validation for microarray data analysis: experimental assessment of Clest, Consensus Clustering, Figure of Merit, Gap Statistics and Model Explorer. BMC Bioinformatics 9, 462 (2008)

    CrossRef  Google Scholar 

  6. Shamir, R., Sharan, R.: Algorithmic approaches to clustering gene expression data. In: Jiang, T., Smith, T., Xu, Y., Zhang, M.Q. (eds.) Current Topics in Computational Biology, pp. 120–161. MIT Press, Cambridge (2003)

    Google Scholar 

  7. Priness, I., Maimon, O., Ben-Gal, I.: Evaluation of gene-expression clustering via mutual information distance measure. BMC Bioinformatics 8(111), 1–12 (2007)

    Google Scholar 

  8. Deza, E., Deza, M.: Dictionary of distances. Elsevier, Amsterdam (2006)

    Google Scholar 

  9. Costa, I., de Carvalho, F., de Souto, M.: Comparative analysis of clustering methods for gene expression time course data. Genetics and Molecular Biology 27(4), 623–631 (2004)

    Google Scholar 

  10. Gibbons, F., Roth, F.: Judging the quality of gene expression-based clustering methods using gene annotation. Genome Research (12), 1574–1581 (2002)

    CrossRef  Google Scholar 

  11. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience, New York City (1991)

    MATH  CrossRef  Google Scholar 

  12. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, Heidelberg (2003)

    Google Scholar 

  13. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC Monographs on Statistics & Applied Probability. Chapman and Hall/CRC, Boca Raton (1986)

    Google Scholar 

  14. Dudoit, S., Fridlyand, J.: A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biology 3 (2002)

    Google Scholar 

  15. Di Gesú, V., Giancarlo, R., Lo Bosco, G., Raimondi, A., Scaturro, D.: Genclust: A genetic algorithm for clustering gene expression data. BMC Bioinformatics 6, 289 (2005)

    CrossRef  Google Scholar 

  16. Wen, X., Fuhrman, S., Michaels, G.S., Carr, G.S., Smith, D.B., Barker, J.L., Somogyi, R.: Large scale temporal gene expression mapping of central nervous system development. Proc. of The National Academy of Science USA 95, 334–339 (1998)

    CrossRef  Google Scholar 

  17. Yeung, K.Y., Haynor, D.R., Ruzzo, W.L.: Validating clustering for gene expression data. Bioinformatics 17, 309–318 (2001)

    CrossRef  Google Scholar 

  18. Alizadeh, A., Eisen, M., Davis, R., Ma, C., Lossos, I., Rosenwald, A., Boldrick, J., Sabet, H., Tran, T., Yu, X., Powell, J., Yang, L., Marti, G., Moore, T., Hudson, J.J., Lu, L., Lewis, D., Tibshirani, R., Sherlock, G., Chan, W., Greiner, T., Weisenburger, D., Armitage, J., Warnke, R., Levy, R., Wilson, W., Grever, M., Byrd, J., Botstein, D., Brown, P., Staudt, L.: Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000)

    CrossRef  Google Scholar 

  19. NCI 60 Cancer Microarray Project, http://genome-www.stanford.edu/NCI60

  20. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle regulated genes of the yeast Saccharomyces Cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998)

    Google Scholar 

  21. Hartuv, E., Schmitt, A., Lange, J., Meier-Ewert, S., Lehrach, H., Shamir, R.: An algorithm for clustering of cDNAs for gene expression analysis using short oligonucleotide fingerprints. Genomics 66, 249–256 (2000)

    CrossRef  Google Scholar 

  22. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing Surveys 31(3), 264–323 (1999)

    CrossRef  Google Scholar 

  23. Chen, J.Y., Lonardi, S. (eds.): Biological Data Mining. Statistical Indices for Computational and Data Driven Class Discovery in Microarray Data, pp. 295–335. CRC Press, Boca Raton (2009)

    Google Scholar 

  24. Xu, Y., Olman, V., Xu, D.: Clustering gene expression data using a graph-theoretic approach: An application of minimum spanning tree. Bioinformatics 18(4), 526–535 (2002)

    CrossRef  Google Scholar 

  25. Metz, C.E.: Basic principles of ROC analysis. Seminars in Nuclear Medicine 8(4), 283–298 (1978)

    CrossRef  Google Scholar 

  26. Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1), 29–36 (1982)

    Google Scholar 

  27. Yeung, K.Y.: Cluster Analysis of Gene Expression Data. PhD thesis, University of Washington (2001)

    Google Scholar 

  28. Daub, C., Steuer, R., Selbig, J., Kloska, S.: Estimating mutual information using b-spline functions - an improved similarity measure for analysing gene expression data. BMC Bioinformatics 5(1), 118 (2004)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giancarlo, R., Lo Bosco, G., Pinello, L. (2010). Distance Functions, Clustering Algorithms and Microarray Data Analysis. In: Blum, C., Battiti, R. (eds) Learning and Intelligent Optimization. LION 2010. Lecture Notes in Computer Science, vol 6073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13800-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13800-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13799-0

  • Online ISBN: 978-3-642-13800-3

  • eBook Packages: Computer ScienceComputer Science (R0)