Skip to main content

The Biology of Acute Lymphoblastic Leukemia

  • Chapter
  • First Online:
Childhood Leukemia

Part of the book series: Pediatric Oncology ((PEDIATRICO))

Abstract

Discoveries of the underlying biological pathways that drive leukemogenesis in children have taken place at an astonishing pace. These findings have resulted in large part because of the evolution of technical developments in analyzing chromosome structure, the development of monoclonal antibodies capable of recognizing discrete cell surface proteins that correlate with cell lineage and differentiation state, recombinant DNA technology, and engineered mouse models (e.g., transgenic and “knock out” models). More recently, advances in high-throughput genomics and progress in stem cell biology have transformed the field of cancer biology in general and perhaps more so in hematological malignancies. A cohesive view of the stepwise process of transformation and the cellular heterogeneity of the leukemic clone is emerging and, importantly, leukemia-specific targets have been identified and novel therapeutic approaches have been directed at these lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JM, Cory S (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26(9):1324–1337

    Article  PubMed  CAS  Google Scholar 

  • Adolfsson J, Mansson R et al (2005) Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121(2):295–306

    Article  PubMed  CAS  Google Scholar 

  • Arico M, Valsecchi MG et al (2000) Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med 342(14):998–1006

    Article  PubMed  CAS  Google Scholar 

  • Armstrong SA, Staunton JE et al (2001) MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 30(1):41–47

    Article  PubMed  CAS  Google Scholar 

  • Attarbaschi A, Mann G et al (2008) Minimal residual disease values discriminate between low and high relapse risk in children with B-cell precursor acute lymphoblastic leukemia and an intrachromosomal amplification of chromosome 21: the Austrian and German acute lymphoblastic leukemia Berlin-Frankfurt-Munster (ALL-BFM) trials. J Clin Oncol 26(18):3046–3050

    Article  PubMed  CAS  Google Scholar 

  • Bachmann PS, Gorman R et al (2005) Dexamethasone resistance in B-cell precursor childhood acute lymphoblastic leukemia occurs downstream of ligand-induced nuclear translocation of the glucocorticoid receptor. Blood 105(6): 2519–2526

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  PubMed  CAS  Google Scholar 

  • Beesley AH, Cummings AJ et al (2005) The gene expression signature of relapse in paediatric acute lymphoblastic leukaemia: implications for mechanisms of therapy failure. Br J Haematol 131(4):447–456

    Article  PubMed  CAS  Google Scholar 

  • Beishuizen A, de Bruijn MA et al (1997) Heterogeneity in junctional regions of immunoglobulin kappa deleting element rearrangements in B cell leukemias: a new molecular target for detection of minimal residual disease. Leukemia 11(12): 2200–2207

    Article  PubMed  CAS  Google Scholar 

  • Belson M, Kingsley B et al (2007) Risk factors for acute leukemia in children: a review. Environ Health Perspect 115(1): 138–145

    Article  PubMed  CAS  Google Scholar 

  • Beltinger C, Bohler T et al (1998) Mutation analysis of CD95 (APO-1/Fas) in childhood B-lineage acute lymphoblastic leukaemia. Br J Haematol 102(3):722–728

    Article  PubMed  CAS  Google Scholar 

  • Bene MC, Castoldi G et al (1995) Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia 9(10):1783–1786

    PubMed  CAS  Google Scholar 

  • Bercovich D, Ganmore I et al (2008) Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down’s syndrome. Lancet 372(9648):1484–1492

    Article  PubMed  CAS  Google Scholar 

  • Bhojwani D, Kang H et al (2008) Gene expression signatures predictive of early response and outcome in high-risk childhood acute lymphoblastic leukemia: A Children’s Oncology Group Study [corrected]. J Clin Oncol 26(27): 4376–4384

    Article  PubMed  CAS  Google Scholar 

  • Bhojwani D, Kang H et al (2006) Biologic pathways associated with relapse in childhood acute lymphoblastic leukemia: a Children’s Oncology Group study. Blood 108(2): 711–717

    Article  PubMed  CAS  Google Scholar 

  • Bryder D, Rossi DJ et al (2006) Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol 169: 338–346

    Article  PubMed  CAS  Google Scholar 

  • Bryder D, Sigvardsson M (2010) Shaping up a lineage – lessons from B lymphopoesis. Curr Opin Immunol 22(2):148–153

    Article  PubMed  CAS  Google Scholar 

  • Busslinger M (2004) Transcriptional control of early B cell development. Annu Rev Immunol 22:55–79

    Article  PubMed  CAS  Google Scholar 

  • Calin GA, Ferracin M et al (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353(17):1793–1801

    Article  PubMed  CAS  Google Scholar 

  • Carter NP, Meyer EW (1994) Introduction to the principles of flow cytometry. In: Ormerod MG (ed) Flow cytometry: a practical approach. Oxford University Press, New York

    Google Scholar 

  • Case M, Matheson E et al (2008) Mutation of genes affecting the RAS pathway is common in childhood acute lymphoblastic leukemia. Cancer Res 68(16):6803–6809

    Article  PubMed  CAS  Google Scholar 

  • Castor A, Nilsson L et al (2005) Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nat Med 11(6):630–637

    Article  PubMed  CAS  Google Scholar 

  • Cazzaniga G, Biondi A (2005) Molecular monitoring of childhood acute lymphoblastic leukemia using antigen receptor gene rearrangements and quantitative polymerase chain reaction technology. Haematologica 90(3):382–390

    PubMed  CAS  Google Scholar 

  • Chen CL, Liu Q et al (1997) Higher frequency of glutathione S-transferase deletions in black children with acute lymphoblastic leukemia. Blood 89(5):1701–1707

    PubMed  CAS  Google Scholar 

  • Cheok MH, Yang W et al (2003) Treatment-specific changes in gene expression discriminate in vivo drug response in human leukemia cells. Nat Genet 34(1):85–90

    Article  PubMed  CAS  Google Scholar 

  • Choi S, Henderson MJ et al (2007) Relapse in children with acute lymphoblastic leukemia involving selection of a preexisting drug-resistant subclone. Blood 110(2):632–639

    Article  PubMed  CAS  Google Scholar 

  • Clark SJ, Harrison J et al (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22(15): 2990–2997

    Article  PubMed  CAS  Google Scholar 

  • Clarke MF, Dick JE et al (2006) Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66(19):9339–9344

    Article  PubMed  CAS  Google Scholar 

  • Cobaleda C, Gutierrez-Cianca N et al (2000) A primitive hematopoietic cell is the target for the leukemic transformation in human philadelphia-positive acute lymphoblastic leukemia. Blood 95(3):1007–1013

    PubMed  CAS  Google Scholar 

  • Coustan-Smith E, Kitanaka A et al (1996) Clinical relevance of BCL-2 overexpression in childhood acute lymphoblastic leukemia. Blood 87(3):1140–1146

    PubMed  CAS  Google Scholar 

  • Czerny T, Busslinger M (1995) DNA-binding and transactivation properties of Pax-6: three amino acids in the paired domain are responsible for the different sequence recognition of Pax-6 and BSAP (Pax-5). Mol Cell Biol 15(5): 2858–2871

    PubMed  CAS  Google Scholar 

  • Den Boer ML, van Slegtenhorst M et al (2009) A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol 10(2):125–134

    Article  CAS  Google Scholar 

  • Druker BJ, Sawyers CL et al (2001) Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344(14): 1038–1042

    Article  PubMed  CAS  Google Scholar 

  • Dutt A, Beroukhim R (2007) Single nucleotide polymorphism array analysis of cancer. Curr Opin Oncol 19(1):43–49

    Article  PubMed  CAS  Google Scholar 

  • Ferrando AA (2009) The role of NOTCH1 signaling in T-ALL. Hematology Am Soc Hematol Educ Program 353–361

    Google Scholar 

  • Flohr T, Schrauder A et al (2008) Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia 22(4):771–782

    Article  PubMed  CAS  Google Scholar 

  • Ford AM, Bennett CA et al (1998) Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia. Proc Natl Acad Sci USA 95(8):4584–4588

    Article  PubMed  CAS  Google Scholar 

  • French D, Yang W et al (2009) Acquired variation outweighs inherited variation in whole genome analysis of methotrexate polyglutamate accumulation in leukemia. Blood 113(19): 4512–4520

    Article  PubMed  CAS  Google Scholar 

  • Fulci V, Colombo T et al (2009) Characterization of B- and T-lineage acute lymphoblastic leukemia by integrated analysis of MicroRNA and mRNA expression profiles. Genes Chromosomes Cancer 48(12):1069–1082

    Article  PubMed  CAS  Google Scholar 

  • Fulda S (2009a) Apoptosis pathways and their therapeutic exploitation in pancreatic cancer. J Cell Mol Med 13(7): 1221–1227

    Article  PubMed  Google Scholar 

  • Fulda S (2009b) Therapeutic opportunities for counteracting apoptosis resistance in childhood leukaemia. Br J Haematol 145(4):441–454

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Manero G, Issa JP (2005) Histone deacetylase inhibitors: a review of their clinical status as antineoplastic agents. Cancer Invest 23(7):635–642

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Manero G, Jeha S et al (2003) Aberrant DNA methylation in pediatric patients with acute lymphocytic leukemia. Cancer 97(3):695–702

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Manero G, Yang H et al (2009) Epigenetics of acute lymphocytic leukemia. Semin Hematol 46(1):24–32

    Article  PubMed  CAS  Google Scholar 

  • Germano G, del Giudice L et al (2003) Clonality profile in relapsed precursor-B-ALL children by GeneScan and sequencing analyses. Consequences on minimal residual disease monitoring. Leukemia 17(8):1573–1582

    Article  PubMed  CAS  Google Scholar 

  • Ghia P, ten Boekel E et al (1998) B-cell development: a comparison between mouse and man. Immunol Today 19(10):480–485

    Article  PubMed  CAS  Google Scholar 

  • Goemans BF, Zwaan CM et al (2005) In vitro profiling of the sensitivity of pediatric leukemia cells to tipifarnib: identification of T-cell ALL and FAB M5 AML as the most sensitive subsets. Blood 106(10):3532–3537

    Article  PubMed  CAS  Google Scholar 

  • Graf Einsiedel H, Taube T et al (2002) Deletion analysis of p16(INKa) and p15(INKb) in relapsed childhood acute lymphoblastic leukemia. Blood 99(12):4629–4631

    Article  PubMed  Google Scholar 

  • Greaves M (2006) Infection, immune responses and the aetiology of childhood leukaemia. Nat Rev Cancer 6(3):193–203

    Article  PubMed  CAS  Google Scholar 

  • Greaves M (2009) Darwin and evolutionary tales in leukemia. American Society of Hematology, New Orleans

    Google Scholar 

  • Guggemos A, Eckert C et al (2003) Assessment of clonal stability of minimal residual disease targets between 1st and 2nd relapse of childhood precursor B-cell acute lymphoblastic leukemia. Haematologica 88(7):737–746

    PubMed  CAS  Google Scholar 

  • Guglielmi C, Cordone I et al (1997) Immunophenotype of adult and childhood acute lymphoblastic leukemia: changes at first relapse and clinico-prognostic implications. Leukemia 11(9):1501–1507

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez MI, Siraj AK et al (2003) Concurrent methylation of multiple genes in childhood ALL: Correlation with phenotype and molecular subgroup. Leukemia 17(9):1845–1850

    Article  PubMed  CAS  Google Scholar 

  • Harrison CJ, Moorman AV et al (2004) Three distinct subgroups of hypodiploidy in acute lymphoblastic leukaemia. Br J Haematol 125(5):552–559

    Article  PubMed  Google Scholar 

  • Harvey R, Mulligan RC et al (2010a) Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genomw wide copy mumber alterations, clinical charactersitics, and outcome

    Google Scholar 

  • Harvey RC, Mullighan CG et al (2010b) Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leu-kemia. Blood 115 (26): 5312–5321

    Google Scholar 

  • Hayday AC, Pennington DJ (2007) Key factors in the organized chaos of early T cell development. Nat Immunol 8(2): 137–144

    Article  PubMed  CAS  Google Scholar 

  • Heerema NA, Nachman JB et al (2004) Deletion of 7p or monosomy 7 in pediatric acute lymphoblastic leukemia is an adverse prognostic factor: a report from the Children’s Cancer Group. Leukemia 18(5):939–947

    Article  PubMed  CAS  Google Scholar 

  • Heerema NA, Palmer CG et al (1992) Cytogenetic analysis in relapsed childhood acute lymphoblastic leukemia. Leukemia 6(3):185–192

    PubMed  CAS  Google Scholar 

  • Heerema NA, Sather HN et al (2000) Clinical significance of deletions of chromosome arm 6q in childhood acute lymphoblastic leukemia: a report from the Children’s Cancer Group. Leuk Lymphoma 36(5–6):467–478

    Article  PubMed  CAS  Google Scholar 

  • Henderson MJ, Choi S et al (2008) Mechanism of relapse in pediatric acute lymphoblastic leukemia. Cell Cycle 7(10): 1315–1320

    Article  PubMed  CAS  Google Scholar 

  • Hertzberg L, Vendramini E et al (2010) Down syndrome acute lymphoblastic leukemia, a highly heterogeneous disease in which aberrant expression of CRLF2 is associated with mutated JAK2: a report from the International BFM Study Group. Blood 115(5):1006–1017

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann K, Firth MJ et al (2008) Prediction of relapse in paediatric pre-B acute lymphoblastic leukaemia using a three-gene risk index. Br J Haematol 140(6):656–664

    Article  PubMed  CAS  Google Scholar 

  • Holleman A, Cheok MH et al (2004) Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med 351(6):533–542

    Article  PubMed  CAS  Google Scholar 

  • Hong D, Gupta R et al (2008) Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia. Science 319(5861):336–339

    Article  PubMed  CAS  Google Scholar 

  • Hongo T, Fujii Y (1991) In vitro chemosensitivity of lymphoblasts at relapse in childhood leukemia using the MTT assay. Int J Hematol 54(3):219–230

    PubMed  CAS  Google Scholar 

  • Hotfilder M, Rottgers S et al (2002) Immature CD34+CD19– progenitor/stem cells in TEL/AML1-positive acute lymphoblastic leukemia are genetically and functionally normal. Blood 100(2):640–646

    Article  PubMed  CAS  Google Scholar 

  • Hunter AM, LaCasse EC et al (2007) The inhibitors of apoptosis (IAPs) as cancer targets. Apoptosis 12(9):1543–1568

    Article  PubMed  CAS  Google Scholar 

  • Iorio MV, Croce CM (2009) MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol 27(34):5848–5856

    Article  PubMed  CAS  Google Scholar 

  • Janeway CA, Travers P et al (2001) Immunobiology. Garland, New York, London

    Google Scholar 

  • Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128(4):683–692

    Article  PubMed  CAS  Google Scholar 

  • Kang H, Chen IM et al (2010) Gene expression classifiers for relapse-free survival and minimal residual disease improve risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia. Blood 115(7):1394–1405

    Article  PubMed  CAS  Google Scholar 

  • Kang MH, Reynolds CP (2009) Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 15(4):1126–1132

    Article  PubMed  CAS  Google Scholar 

  • Kim R, Emi M et al (2007) Antisense and nonantisense effects of antisense Bcl-2 on multiple roles of Bcl-2 as a chemosensitizer in cancer therapy. Cancer Gene Ther 14(1):1–11

    Article  PubMed  CAS  Google Scholar 

  • Klumper E, Pieters R et al (1995) In vitro cellular drug resistance in children with relapsed/refractory acute lymphoblastic leukemia. Blood 86(10):3861–3868

    PubMed  CAS  Google Scholar 

  • Korenberg JR, Chen XN et al (1994) Down syndrome phenotypes: the consequences of chromosomal imbalance. Proc Natl Acad Sci USA 91(11):4997–5001

    Article  PubMed  CAS  Google Scholar 

  • Kotani A, Ha D et al (2009) miR-128b is a potent glucocorticoid sensitizer in MLL-AF4 acute lymphocytic leukemia cells and exerts cooperative effects with miR-221. Blood 114(19):4169–4178

    Article  PubMed  CAS  Google Scholar 

  • Krajinovic M, Labuda D et al (2002a) Polymorphisms in genes encoding drugs and xenobiotic metabolizing enzymes, DNA repair enzymes, and response to treatment of childhood acute lymphoblastic leukemia. Clin Cancer Res 8(3):802–810

    PubMed  CAS  Google Scholar 

  • Krajinovic M, Sinnett H et al (2002b) Role of NQO1, MPO and CYP2E1 genetic polymorphisms in the susceptibility to childhood acute lymphoblastic leukemia. Int J Cancer 97(2):230–236

    Article  PubMed  CAS  Google Scholar 

  • Krivtsov AV, Twomey D et al (2006) Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442(7104):818–822

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Blomgren K (2007) Mitochondrial cell death control in familial Parkinson disease. PLoS Biol 5(7):e206

    Article  PubMed  CAS  Google Scholar 

  • Laird PW (2010) Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet 11(3):191–203

    Article  PubMed  CAS  Google Scholar 

  • Lange B (2000) The management of neoplastic disorders of haematopoiesis in children with Down’s syndrome. Br J Haematol 110(3):512–524

    Article  PubMed  CAS  Google Scholar 

  • Lapidot T, Sirard C et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367(6464):645–648

    Article  PubMed  CAS  Google Scholar 

  • le Viseur C, Hotfilder M et al (2008) In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties. Cancer Cell 14(1): 47–58

    Article  PubMed  CAS  Google Scholar 

  • Lilleyman JS, Stevens RF et al (1995) Changes in cytomorphology of childhood lymphoblastic leukaemia at the time of disease relapse. Childhood Leukaemia Working Party of the United Kingdom Medical Research Council. J Clin Pathol 48(11):1051–1053

    Article  PubMed  CAS  Google Scholar 

  • Liu T, Raetz E et al (2002) Diversity of the apoptotic response to chemotherapy in childhood leukemia. Leukemia 16(2): 223–232

    Article  PubMed  CAS  Google Scholar 

  • Loh ML, Rubnitz JE (2002) TEL/AML1-positive pediatric leukemia: prognostic significance and therapeutic approaches. Curr Opin Hematol 9(4):345–352

    Article  PubMed  Google Scholar 

  • Lugthart S, Cheok MH et al (2005) Identification of genes associated with chemotherapy crossresistance and treatment response in childhood acute lymphoblastic leukemia. Cancer Cell 7(4):375–386

    Article  PubMed  CAS  Google Scholar 

  • Malinge S, Ben-Abdelali R et al (2007) Novel activating JAK2 mutation in a patient with Down syndrome and B-cell precursor acute lymphoblastic leukemia. Blood 109(5): 2202–2204

    Article  PubMed  CAS  Google Scholar 

  • Malinge S, Izraeli S et al (2009) Insights into the manifestations, outcomes, and mechanisms of leukemogenesis in Down syndrome. Blood 113(12):2619–2628

    Article  PubMed  CAS  Google Scholar 

  • Maloney KW, McGavran L et al (1999) Acquisition of p16(INK4A) and p15(INK4B) gene abnormalities between initial diagnosis and relapse in children with acute lymphoblastic leukemia. Blood 93(7):2380–2385

    PubMed  CAS  Google Scholar 

  • Marks DI, Kurz BW et al (1997) Altered expression of p53 and mdm-2 proteins at diagnosis is associated with early treatment failure in childhood acute lymphoblastic leukemia. J Clin Oncol 15(3):1158–1162

    PubMed  CAS  Google Scholar 

  • Mason D, Andre P et al (2002) Leucocyte Typoing VII. Oxford University Press, Oxford

    Google Scholar 

  • Meshinchi S, Appelbaum FR (2009) Structural and functional alterations of FLT3 in acute myeloid leukemia. Clin Cancer Res 15(13):4263–4269

    Article  PubMed  CAS  Google Scholar 

  • Mi S, Lu J et al (2007) MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci USA 104(50): 19971–19976

    Article  PubMed  CAS  Google Scholar 

  • Moorman AV, Richards SM et al (2007) Prognosis of children with acute lymphoblastic leukemia (ALL) and intrachromosomal amplification of chromosome 21 (iAMP21). Blood 109(6):2327–2330

    Article  PubMed  CAS  Google Scholar 

  • Mori H, Colman SM et al (2002) Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc Natl Acad Sci USA 99(12): 8242–8247

    Article  PubMed  CAS  Google Scholar 

  • Muller A, Florek M (2010) 5-Azacytidine/Azacitidine. Recent Results Cancer Res 184:159–170

    Article  PubMed  CAS  Google Scholar 

  • Mullighan CG, Goorha S et al (2007a) Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446(7137):758–764

    Article  PubMed  CAS  Google Scholar 

  • Mullighan CG, Miller CB et al (2008a) BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453(7191):110–114

    Article  PubMed  CAS  Google Scholar 

  • Mullighan CG, Phillips LA et al (2008b) Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science 322(5906):1377–1380

    Article  PubMed  CAS  Google Scholar 

  • Mullighan CG, Collins-Underwood JR et al (2009a) Rearrange-ment of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia. Nat Genet 41: 1243–1246

    Article  PubMed  CAS  Google Scholar 

  • Mullighan CG, Su X et al (2009b) Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 360(5):470–480

    Article  PubMed  CAS  Google Scholar 

  • Mullighan CG, Zhang J et al (2009c) JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA 106(23):9414–9418

    Article  PubMed  CAS  Google Scholar 

  • Mullighan RC, Morin RD et al (2009d) Next generation transcriptomic resequencing identifies novel genetic alterations in high-risk (HR) childhood acute lymphoblastic leukemia (ALL): a report from the Children’s Oncology group HR ALL TARGET Project. Blood 114:704

    Google Scholar 

  • Nachman JB, Heerema NA et al (2007) Outcome of treatment in children with hypodiploid acute lymphoblastic leukemia. Blood 110(4):1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Nahar R, Muschen M (2009) Pre-B cell receptor signaling in acute lymphoblastic leukemia. Cell Cycle 8(23): 3874–3877

    Article  PubMed  CAS  Google Scholar 

  • Nowell PC, Hungerford DA (1960) Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst 25:85–109

    PubMed  CAS  Google Scholar 

  • Nutt SL, Kee BL (2007) The transcriptional regulation of B cell lineage commitment. Immunity 26(6):715–725

    Article  PubMed  CAS  Google Scholar 

  • O’Brien SM, Cunningham CC et al (2005) Phase I to II multicenter study of oblimersen sodium, a Bcl-2 antisense oligonucleotide, in patients with advanced chronic lymphocytic leukemia. J Clin Oncol 23(30):7697–7702

    Article  PubMed  CAS  Google Scholar 

  • Papaemmanuil E, Hosking FJ et al (2009) Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat Genet 41(9):1006–1010

    Article  PubMed  CAS  Google Scholar 

  • Pine SR, Wiemels JL et al (2003) TEL-AML1 fusion precedes differentiation to pre-B cells in childhood acute lymphoblastic leukemia. Leuk Res 27(2):155–164

    Article  PubMed  CAS  Google Scholar 

  • Pongers-Willemse MJ, Seriu T et al (1999) Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: report of the BIOMED-1 CONCERTED ACTION: investigation of minimal residual disease in acute leukemia. Leukemia 13(1):110–118

    Article  PubMed  CAS  Google Scholar 

  • Prokop A, Wieder T et al (2000) Relapse in childhood acute lymphoblastic leukemia is associated with a decrease of the Bax/Bcl-2 ratio and loss of spontaneous caspase-3 processing in vivo. Leukemia 14(9):1606–1613

    Article  PubMed  CAS  Google Scholar 

  • Pui CH, Chessells JM et al (2003) Clinical heterogeneity in childhood acute lymphoblastic leukemia with 11q23 rearrangements. Leukemia 17(4):700–706

    Article  PubMed  CAS  Google Scholar 

  • Pui CH, Gaynon PS et al (2002) Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet 359(9321): 1909–1915

    Article  PubMed  Google Scholar 

  • Quintas-Cardama A, Cortes J (2009) Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood 113(8): 1619–1630

    Article  PubMed  CAS  Google Scholar 

  • Rabin KR, Wang J et al (2009) Gene expression profiling in Down Syndrome acute lymphoblastic leukemia identifies distinct profiles assocaited with CRLF2 expression. Blood 114:2389

    Google Scholar 

  • Raimondi SC, Behm FG et al (1990) Cytogenetics of pre-B-cell acute lymphoblastic leukemia with emphasis on prognostic implications of the t(1;19). J Clin Oncol 8(8):1380–1388

    PubMed  CAS  Google Scholar 

  • Ramirez J, Lukin K et al (2010) From hematopoietic progenitors to B cells: mechanisms of lineage restriction and commitment. Curr Opin Immunol 22(2):177–184

    Article  PubMed  CAS  Google Scholar 

  • Real PJ, Ferrando AA (2009) NOTCH inhibition and glucocorticoid therapy in T-cell acute lymphoblastic leukemia. Leukemia 23(8):1374–1377

    Article  PubMed  CAS  Google Scholar 

  • Reed JC, Pellecchia M (2005) Apoptosis-based therapies for hematologic malignancies. Blood 106(2):408–418

    Article  PubMed  CAS  Google Scholar 

  • Robertson KD, Wolffe AP (2000) DNA methylation in health and disease. Nat Rev Genet 1(1):11–19

    Article  PubMed  CAS  Google Scholar 

  • Roman-Gomez J, Jimenez-Velasco A et al (2007) Poor prognosis in acute lymphoblastic leukemia may relate to promoter hypermethylation of cancer-related genes. Leuk Lymphoma 48(7):1269–1282

    Article  PubMed  CAS  Google Scholar 

  • Romana SP, Mauchauffe M et al (1995) The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion. Blood 85(12):3662–3670

    PubMed  CAS  Google Scholar 

  • Ross ME, Zhou X et al (2003) Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 102(8):2951–2959

    Article  PubMed  CAS  Google Scholar 

  • Rothenberg EV, Moore JE et al (2008) Launching the T-cell-lineage developmental programme. Nat Rev Immunol 8(1): 9–21

    Article  PubMed  CAS  Google Scholar 

  • Russell LJ, Capasso M et al (2009) Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B-cell precursor acute lymphoblastic leukemia. Blood 114(13):2688–2698

    Article  PubMed  CAS  Google Scholar 

  • Schimmer AD, Hedley DW et al (2001) Receptor- and mitochondrial-mediated apoptosis in acute leukemia: a translational view. Blood 98(13):3541–3553

    Article  PubMed  CAS  Google Scholar 

  • Schotte D, Chau JC et al (2009) Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia. Leukemia 23(2):313–322

    Article  PubMed  CAS  Google Scholar 

  • Schultz KR, Bowman WP et al (2009) Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a children’s oncology group study. J Clin Oncol 27(31):5175–5181

    Article  PubMed  CAS  Google Scholar 

  • Schultz KR, Pullen DJ et al (2007) Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children’s Cancer Group (CCG). Blood 109(3):926–935

    Article  PubMed  CAS  Google Scholar 

  • Schwarz BA, Sambandam A et al (2007) Selective thymus settling regulated by cytokine and chemokine receptors. J Immunol 178(4):2008–2017

    PubMed  CAS  Google Scholar 

  • Seeger K, von Stackelberg A et al (2001) Relapse of TEL-AML1–positive acute lymphoblastic leukemia in childhood: a matched-pair analysis. J Clin Oncol 19(13):3188–3193

    PubMed  CAS  Google Scholar 

  • Silverman LB (2007) Acute lymphoblastic leukemia in infancy. Pediatr Blood Cancer 49(7 Suppl):1070–1073

    Article  PubMed  Google Scholar 

  • Silverman LB, McLean TW et al (1997) Intensified therapy for infants with acute lymphoblastic leukemia: results from the Dana-Farber Cancer Institute Consortium. Cancer 80(12): 2285–2295

    Article  PubMed  CAS  Google Scholar 

  • Sorich MJ, Pottier N et al (2008) In vivo response to methotrexate forecasts outcome of acute lymphoblastic leukemia and has a distinct gene expression profile. PLoS Med 5(4):e83

    Article  PubMed  CAS  Google Scholar 

  • Staber PB, Linkesch W et al (2004) Common alterations in gene expression and increased proliferation in recurrent acute myeloid leukemia. Oncogene 23(4):894–904

    Article  PubMed  CAS  Google Scholar 

  • Stam RW, den Boer ML et al (2006) Silencing of the tumor suppressor gene FHIT is highly characteristic for MLL gene rearranged infant acute lymphoblastic leukemia. Leukemia 20(2):264–271

    Article  PubMed  CAS  Google Scholar 

  • Stam RW, Den Boer ML et al (2010) Association of high-level MCL-1 expression with in vitro and in vivo prednisone resistance in MLL-rearranged infant acute lymphoblastic leukemia. Blood 115(5):1018–1025

    Article  PubMed  CAS  Google Scholar 

  • Stumpel DJ, Schneider P et al (2009) Specific promoter methylation identifies different subgroups of MLL-rearranged infant acute lymphoblastic leukemia, influences clinical outcome, and provides therapeutic options. Blood 114(27): 5490–5498

    Article  PubMed  CAS  Google Scholar 

  • Szczepanski T, Orfao A et al (2001) Minimal residual disease in leukaemia patients. Lancet Oncol 2(7):409–417

    Article  PubMed  CAS  Google Scholar 

  • Szczepanski T, Willemse MJ et al (2002) Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease. Blood 99(7):2315–2323

    Article  PubMed  CAS  Google Scholar 

  • Thompson EC, Cobb BS et al (2007) Ikaros DNA-binding proteins as integral components of B cell developmental-stage-specific regulatory circuits. Immunity 26(3):335–344

    Article  PubMed  CAS  Google Scholar 

  • Tjio JH, Whang J (1962) Chromosome preparations of bone marrow cells without prior in vitro culture or in vitro colchicine administration. Stain Technol 37:17–20

    PubMed  CAS  Google Scholar 

  • Tomlins SA, Rhodes DR et al (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310(5748):644–648

    Article  PubMed  CAS  Google Scholar 

  • Trevino LR, Yang W et al (2009) Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat Genet 41(9):1001–1005

    Article  PubMed  CAS  Google Scholar 

  • Trueworthy R, Shuster J et al (1992) Ploidy of lymphoblasts is the strongest predictor of treatment outcome in B-progenitor cell acute lymphoblastic leukemia of childhood: a Pediatric Oncology Group study. J Clin Oncol 10(4):606–613

    PubMed  CAS  Google Scholar 

  • van der Linden MH, Valsecchi MG et al (2009) Outcome of congenital acute lymphoblastic leukemia treated on the Interfant-99 protocol. Blood 114(18):3764–3768

    Article  PubMed  CAS  Google Scholar 

  • van der Velden VH, Szczepanski T et al (2003) Age-related patterns of immunoglobulin and T-cell receptor gene rearrangements in precursor-B-ALL: implications for detection of minimal residual disease. Leukemia 17(9):1834–1844

    Article  PubMed  CAS  Google Scholar 

  • van der Velden VH, van Dongen JJ (2009) MRD detection in acute lymphoblastic leukemia patients using Ig/TCR gene rearrangements as targets for real-time quantitative PCR. Methods Mol Biol 538:115–150

    Article  PubMed  CAS  Google Scholar 

  • van Dongen JJ, Adriaansen HJ et al (1988) Immunophenotyping of leukaemias and non-Hodgkin’s lymphomas. Immunological markers and their CD codes. Neth J Med 33(5–6): 298–314

    PubMed  Google Scholar 

  • van Dongen JJ, Wolvers-Tettero IL (1991) Analysis of immunoglobulin and T cell receptor genes. Part I: Basic and technical aspects. Clin Chim Acta 198(1–2):1–91

    Article  PubMed  Google Scholar 

  • Whitlock JA, Sather HN et al (2005) Clinical characteristics and outcome of children with Down syndrome and acute lymphoblastic leukemia: a Children’s Cancer Group study. Blood 106(13):4043–4049

    Article  PubMed  CAS  Google Scholar 

  • Wong HL, Byun HM et al (2006) Rapid and quantitative method of allele-specific DNA methylation analysis. Biotechniques 41(6):734–739

    Article  PubMed  CAS  Google Scholar 

  • Yanez L, Bermudez A et al (2009) Successful induction therapy with decitabine in refractory childhood acute lymphoblastic leukemia. Leukemia 23(7):1342–1343

    Article  PubMed  CAS  Google Scholar 

  • Yang JJ, Bhojwani D et al (2008) Genome-wide copy number profiling reveals molecular evolution from diagnosis to relapse in childhood acute lymphoblastic leukemia. Blood 112(10):4178–4183

    Article  PubMed  CAS  Google Scholar 

  • Yeoh EJ, Ross ME et al (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1(2):133–143

    Article  PubMed  CAS  Google Scholar 

  • Yoda A, Yoda Y et al (2010) Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA 107(1):252–257

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Ng SY et al (2006) Early hematopoietic line-age restrictions directed by Ikaros. Nat Immunol 7(4): 382–391

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Mulligan RC et al (2009) Mutations in the RAS Signaling, B-cell development, TP53/RB1, and JAK signaling pathways are common in high risk B-precursor childhood acute lymphoblastic leukemia (ALl): A report from the Children’s Oncology group High Risk TARGET Project. Blood 114:85

    Article  CAS  Google Scholar 

  • Zuna J, Ford AM et al (2004) TEL deletion analysis supports a novel view of relapse in childhood acute lymphoblastic leukemia. Clin Cancer Res 10(16):5355–5360

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William L. Carroll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Carroll, W.L., Loh, M., Biondi, A., Willman, C. (2011). The Biology of Acute Lymphoblastic Leukemia. In: Reaman, G., Smith, F. (eds) Childhood Leukemia. Pediatric Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13781-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13781-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13780-8

  • Online ISBN: 978-3-642-13781-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics