Classification of Endoscopic Images Using Delaunay Triangulation-Based Edge Features

  • M. Häfner
  • A. Gangl
  • M. Liedlgruber
  • Andreas Uhl
  • A. Vécsei
  • F. Wrba
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6112)

Abstract

In this work we present a method for an automated classification of endoscopic images according to the pit pattern classification scheme. Images taken during colonoscopy are transformed using an extended and rotation invariant version of the Local Binary Patterns operator (LBP). The result of the transforms is then used to extract polygons from the images. Based on these polygons we compute the regularity of the polygon positions by using the Delaunay triangulation and constructing histograms from the edge lengths of the Delaunay triangles. Using these histograms, the classification is carried out by employing the k-nearest-neighbors (k-NN) classifier in conjunction with the histogram intersection distance metric.

While, compared to previously published results, the performance of the proposed approach is lower, the results achieved are yet promising and show that a pit pattern classification is feasible by using the proposed system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bruno, M.J.: Magnification endoscopy, high resolution endoscopy, and chromoscopy; towards a better optical diagnosis. Gut 52(4), 7–11 (2003)CrossRefGoogle Scholar
  2. 2.
    Kudo, S., Hirota, S., Nakajima, T., Hosobe, S., Kusaka, H., Kobayashi, T., Himori, M., Yagyuu, A.: Colorectal tumours and pit pattern. Journal of Clinical Pathology 47, 880–885 (1994)CrossRefGoogle Scholar
  3. 3.
    Kato, S., Fu, K., Sano, Y., Fujii, T., Saito, Y., Matsuda, T., Koba, I., Yoshida, S., Fujimori, T.: Magnifying colonoscopy as a non-biopsy technique for differential diagnosis of non-neoplastic and neoplastic lesions. World Journal of Gastroenterology: WJG 12(9), 1416–1420 (2006)Google Scholar
  4. 4.
    Kudo, S., Tamura, S., Nakajima, T., Yamano, H., Kusaka, H., Watanabe, H.: Diagnosis of colorectal tumorous lesions by magnifying endoscopy. Gastrointestinal Endoscopy 44(1), 8–14 (1996)CrossRefGoogle Scholar
  5. 5.
    Hurlstone, D.: High-resolution magnification chromoendoscopy: Common problems encountered in “pit pattern” interpretation and correct classification of flat colorectal lesions. American Journal of Gastroenterology 97, 1069–1070 (2002)Google Scholar
  6. 6.
    Häfner, M., Gangl, A., Liedlgruber, M., Uhl, A., Vécsei, A., Wrba, F.: Pit pattern classification using multichannel features and multiclassification. In: Exarchos, T.P., Papadopoulos, A., Fotiadis, D.I. (eds.) Handbook of Research on Advanced Techniques in Diagnostic Imaging and Biomedical Applications, pp. 335–350. IGI Global, Hershey (2009)Google Scholar
  7. 7.
    Häfner, M., Gangl, A., Liedlgruber, M., Uhl, A., Vecsei, A., Wrba, F.: Combining Gaussian Markov random fields with the discrete wavelet transform for endoscopic image classification. In: Proceedings of the 17th International Conference on Digital Signal Processing (DSP’09), Santorini, Greece (2009)Google Scholar
  8. 8.
    Häfner, M., Gangl, A., Liedlgruber, M., Uhl, A., Vécsei, A., Wrba, F.: Pit pattern classification using extended local binary patterns. In: Proceedings of the 9th International Conference on Information Technology and Applications in Biomedicine (ITAB’09), Larnaca, Cyprus (November 2009)Google Scholar
  9. 9.
    Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recognition 29(1), 51–59 (1996)CrossRefGoogle Scholar
  10. 10.
    Mäenpää, T., Pietikäinen, M.: Texture analysis with local binary patterns. In: Handbook of Pattern Recognition and Computer Vision, 3rd edn., pp. 197–216. World Scientific, Singapore (2005)CrossRefGoogle Scholar
  11. 11.
    Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Recognition and Machine Intelligence 8(6), 679–698 (1986)CrossRefGoogle Scholar
  12. 12.
    Barber, C., Dobkin, D., Huhdanpaa, H.: The Quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software 2(4), 469–483 (1996)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • M. Häfner
    • 1
  • A. Gangl
    • 2
  • M. Liedlgruber
    • 3
  • Andreas Uhl
    • 3
  • A. Vécsei
    • 4
  • F. Wrba
    • 5
  1. 1.Department for Internal MedicineSt. Elisabeth HospitalVienna
  2. 2.Department of Gastroenterology and HepatologyMedical University of ViennaAustria
  3. 3.Department of Computer SciencesSalzburg UniversityAustria
  4. 4.St. Anna Children’s HospitalViennaAustria
  5. 5.Department of Clinical PathologyMedical University of ViennaAustria

Personalised recommendations