Rough Set-Based Analysis of Characteristic Features for ANN Classifier

  • Urszula Stańczyk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6076)

Abstract

Selection of characteristic features for a classification task is always crucial to high recognition ratio, regardlessly of the particular processing technique applied. Most methodologies offer some inherent mechanisms of dimension reduction that lead to expression of available data in more succinct way, however, combining elements of distinctively different approaches to data analysis brings interesting conclusions as to the role of particular features and their influence on the power of the resulting classifier. The paper presents research on such fusion of processing techniques, namely employing rough set based analysis of features for ANN classifier within stylometric studies on writing styles.

Keywords

Feature Selection Classifier ANN Rough Sets Data Mining Stylometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cyran, K.A., Stanczyk, U.: Indiscernibility relation for continuous attributes: application in image recognition. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 726–735. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Greco, S., Matarazzo, B., Slowinski, R.: The use of rough sets and fuzzy sets in Multi Criteria Decision Making. In: Gal, T., Hanne, T., Stewart, T. (eds.) Advances in Multiple Criteria Decision Making, ch. 14, pp. 14.1–14.59. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  3. 3.
    Greco, S., Matarazzo, B., Slowinski, R.: Dominance-based rough set approach as a proper way of handling graduality in rough set theory. In: Peters, J.F., Skowron, A., Marek, V.W., Orłowska, E., Słowiński, R., Ziarko, W.P. (eds.) Transactions on Rough Sets VII. LNCS, vol. 4400, pp. 36–52. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Matthews, R.A.J., Merriam, T.V.N.: Distinguishing literary styles using neural networks. In: Fiesler, E., Beale, R. (eds.) Handbook of neural computation, p. G8.1.1–6. Oxford University Press, Oxford (1997)Google Scholar
  5. 5.
    Pawlak, Z.: Rough sets and intelligent data analysis. Information Sciences 147, 1–12 (2002)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Peng, R.D., Hengartner, H.: Quantitative analysis of literary styles. The American Statistician 56(3), 15–38 (2002)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Shen, Q.: Rough feature selection for intelligent classifiers. In: Peters, J.F., Skowron, A., Marek, V.W., Orłowska, E., Słowiński, R., Ziarko, W.P. (eds.) Transactions on Rough Sets VII. LNCS, vol. 4400, pp. 244–255. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Stańczyk, U.: Relative reduct-based selection of features for ANN classifier. In: Cyran, K., et al. (eds.) Man-Machine Interactions. AISC, vol. 59, pp. 335–344. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Stańczyk, U., Cyran, K.A.: On employing elements of rough set theory to stylometric analysis of literary texts. International Journal on Applied Mathematics and Informatics 1(2), 159–166 (2007)Google Scholar
  10. 10.
    Stefanowski, J.: On combined classifiers, rule induction and rough sets. In: Peters, J.F., Skowron, A., Düntsch, I., Grzymała-Busse, J.W., Orłowska, E., Polkowski, L. (eds.) Transactions on Rough Sets VI. LNCS, vol. 4374, pp. 329–350. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Słowiński, R., Greco, S., Matarazzo, B.: Dominance-based rough set approach to reasoning about ordinal data. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 5–11. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Urszula Stańczyk
    • 1
  1. 1.Institute of InformaticsSilesian University of TechnologyGliwicePoland

Personalised recommendations