Neuromodulatorische Einflüsse auf das Wohlbefinden: Dopamin und Oxytocin

  • Peter Kirsch
  • Harald Gruppe

Zusammenfassung

Nähert man sich dem Phänomen des Wohlbefindens aus neurobiologischer Sicht, so stellt sich das Problem, dass es sich bei Wohlbefinden um einen subjektiven Zustand handelt. Diese subjektive Qualität macht die Erforschung und Beschreibung der neurobiologischen und neurochemischen Grundlagen schwierig. Darüber hinaus ist Wohlbefinden eine Form affektiven Erlebens, die vom Gesamtzustand des Individuums beeinflusst wird. Aufgrund der subjektiven Erlebnisqualität und globalen Determiniertheit des Phänomens kann davon ausgegangen werden, dass die körperlichen und psychologischen Einflussfaktoren auf das Wohlbefinden, respektive sein Fehlen, äußerst vielfältig sind. Eine Annäherung an die neurobiologischen Grundlagen erfordert daher zunächst eine Reduzierung auf allgemeine Prinzipien, die dem Wohlbefinden als subjektiver Erlebensqualität zugrunde liegen. Relevante Aspekte müssen dann gegenüber ähnlichen Konstrukten abgegrenzt und operationalisiert, d. h. experimentell manipulierbar und messbar gemacht werden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adolphs, R. (2003). Cognitive neuroscience of human social behaviour. Nature Reviews Neuroscience, 4, 165–178.PubMedCrossRefGoogle Scholar
  2. Amico, J. A., Seif, S. M. & Robinson, A. G. (1981). Oxytocin in human plasma: correlation with neurophysin and stimulation with estrogen. The Journal of Clinical Endocrinology and Metabolism, 52, 988–993.PubMedCrossRefGoogle Scholar
  3. Andari, E., Duhamel, J.-R., Zalla, T., Herbrecht, E., Leboyer, M. & Sirigu, A. (2010). Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proceedings of the National Academy of Sciences, 107(9), 4389–4394.CrossRefGoogle Scholar
  4. Aron, A., Fisher, H., Mashek, D. J., Strong, G., Li, H. & Brown, L. L. (2005). Reward, motivation, and emotion systems associated with early-stage intense romantic love. Journal of Neurophysiology, 94, 327–337.PubMedCrossRefGoogle Scholar
  5. Bartels, A. & Zeki, S. (2004). The neural correlates of maternal and romantic love. Neuroimage, 21, 1155–1166.PubMedCrossRefGoogle Scholar
  6. Bartz, J. A. & Hollander, E. (2006). The neuroscience of affiliation: Forging links between basic and clinical research on neuropeptides and social behavior. Hormones and Behavior, 50, 518–528.PubMedCrossRefGoogle Scholar
  7. Baumgartner, T., Heinrichs, M., Vonlanthen, A., Fischbacher, U. & Fehr, E. (2008). Oxytocin shapes the neural circuitry of trust and trust adaptation in humans. Neuron, 58, 639–650.PubMedCrossRefGoogle Scholar
  8. Bek, M. J., Eisner, G. M., Felder, R. A. & Jose, P. A. (2001). Dopamine receptors in hypertension. Mount Sinai Journal of Medicine, 68, 362–369.PubMedGoogle Scholar
  9. Berridge, K. C. & Robinson, T. E. (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Research Reviews, 28, 309–369.PubMedCrossRefGoogle Scholar
  10. Blaicher, W., Gruber, D., Bieglmayer, C., Blaicher, A. M., Knogler, W. & Huber, J. C. (1999). The role of oxytocin in relation to female sexual arousal. Gynecologic and Obstetric Investigation, 47, 125–126.PubMedCrossRefGoogle Scholar
  11. Blum, K., Braverman, E. R., Holder, J. M., Lubar, J. F., Monastra, V. J., Miller, D. et al. (2000). Reward deficiency syndrome: a biogenetic model for the diagnosis and treatment of impulsive, addictive, and compulsive behaviors. Journal of Psychoactive Drugs, 32 Suppl., 1–112.Google Scholar
  12. Buijs, R. M., de Vries, G. J. & van Leeuwen, F. W. (1985). The distribution and synaptic release of oxytocin in the central nervous system. In J. A. Amico & A. G. Robinson (Eds.), Oxytocin. Clinical and laboratory studies(S. 77–86). Amsterdam: Elsevier.Google Scholar
  13. Burgdorf, J. & Panksepp, J. (2006). The neurobiology of positive emotions. Neuroscience and Biobehavioral Reviews, 30, 173–187.PubMedCrossRefGoogle Scholar
  14. Buss, D. M. (2000). The evolution of happiness. American Psychologist, 55, 15–23.PubMedCrossRefGoogle Scholar
  15. Carlsson, A. (1995). The dopamine theory revisited. In S. R. Hirsch & D. R. Weinberger (Eds.), Schizophrenia(S. 379–400). Oxford: Blackwell Science.Google Scholar
  16. Caspi, A. & Moffitt, T. E. (2006). Gene-environment interactions in psychiatry: joining forces with neuroscience. Nature Reviews Neuroscience, 7, 583–590.PubMedCrossRefGoogle Scholar
  17. Davidson, R. J., Jackson, D. C. & Kalin, N. H. (2000). Emotion, plasticity, context, and regulation: perspectives from affective neuroscience. Psychological Bulletin, 126, 890–909.PubMedCrossRefGoogle Scholar
  18. Depue, R. A. & Collins, P. F. (1999). Neurobiology of the structure of personality: dopamine, facilitation of incentive motivation, and extraversion. Behavioral and Brain Sciences, 22, 491–517.PubMedGoogle Scholar
  19. Di Ciano, P., Coury, A., Depoortere, R. Y., Egilmez, Y., Lane, J. D., Emmett-Oglesby, M. W. et al. (1995). Comparison of changes in extracellular dopamine concentrations in the nucleus accumbens during intravenous self-administration of cocaine or d-amphetamine. Behavioural Pharmacology, 6, 311–322.PubMedGoogle Scholar
  20. Diener, E. & Fujita, F. (1995). Resources, personal strivings, and subjective well-being: a nomothetic and idiographic approach. Journal of Personality and Social Psychology, 68, 926–935. PubMedCrossRefGoogle Scholar
  21. Drevets, W. C., Gautier, C., Price, J. C., Kupfer, D. J., Kinahan, P. E., Grace, A. A. et al. (2001). Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biological Psychiatry, 49, 81–96.PubMedCrossRefGoogle Scholar
  22. Ekman, P. (1994). All emotions are basic. In P. Ekman & R. J. Davidson (Eds.), The nature of emotion: Fundamental questions(S. 15–19). New York, NY: Oxford University Press.Google Scholar
  23. Esch, T. & Stefano,G.B. (2004) »The neurobiology of pleasure, reward processes, addiction and their health implications «, Neuroendocrinology Letters, .25, .235–251.PubMedGoogle Scholar
  24. Esch, T. & Stefano, G. B. (2005). The Neurobiology of Love. Neuroendocrinology Letters, 26, 175–192.PubMedGoogle Scholar
  25. Field, T., Hernandez-Reif, M., Diego, M., Schanberg, S. & Kuhn, C. (2005). Cortisol decreases and serotonin and dopamine increase following massage therapy. International Journal of Neuroscience, 115, 1397–1413.PubMedCrossRefGoogle Scholar
  26. Freund-Mercier, M. J. & Stoeckel, M. E. (1995). Somatodendritic autoreceptors on oxytocin neurones. In R. Ivell & J. A. Russell (Eds.), Oxytocin. Cellular and molecular approaches in medicine and research(S. 185–194). New York: Plenum Press.Google Scholar
  27. Fries, A. B., Ziegler, T. E., Kurian, J. R., Jacoris, S. & Pollak, S. D. (2005). Early experience in humans is associated with changes in neuropeptides critical for regulating social behavior. Proceedings of the National Academy of Science of the United States of America, 102, 17237–17240.CrossRefGoogle Scholar
  28. de la Fuente-Fernandez, R., Phillips, A. G., Zamburlini, M., Sossi, V., Calne, D. B., Ruth, T. J. et al. (2002). Dopamine release in human ventral striatum and expectation of reward. Behavioral Brain Research, 136, 359–363.CrossRefGoogle Scholar
  29. de la Fuente-Fernandez, R., Schulzer, M. & Stoessl, A. J. (2002). The placebo effect in neurological disorders. The Lancet Neurology, 1, 85–91.CrossRefGoogle Scholar
  30. Gimpl, G. & Fahrenholz, F. (2001). The oxytocin receptor system: structure, function, and regulation. Physiological Reviews, 81, 629–683.PubMedGoogle Scholar
  31. Green, L., Fein, D., Modahl, C., Feinstein, C., Waterhouse, L. & Morris, M. (2001). Oxytocin and autistic disorder: alterations in peptide forms. Biological Psychiatry, 50, 609–613.PubMedCrossRefGoogle Scholar
  32. Grey, J. A. (1995). A model of the limbic system and the basal ganglia: Application to anxiety and schizophrenia. In M. S. Gazzaniga (Ed.), The Cognitive Neurosciences(S. 1165–1176). Cambridge: MIT Press.Google Scholar
  33. Heath, R. G. (1963). Electrical Self-Stimulation of the Brain in Man. American Journal of Psychiatry, 120, 571–577.PubMedGoogle Scholar
  34. Heath, R. G. (1972). Pleasure and brain activity in man. Deep and surface electroencephalograms during orgasm. Journal of Nervous and Mental Disease, 154, 3–18.PubMedCrossRefGoogle Scholar
  35. Heimer, L. & Van Hoesen, G. W. (2006). The limbic lobe and its output channels: implications for emotional functions and adaptive behavior. Neuroscience and Biobehavioral Reviews, 30, 126–147.PubMedCrossRefGoogle Scholar
  36. Heinrichs, M., Baumgartner, T., Kirschbaum, C. & Ehlert, U. (2003). Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biological Psychiatry, 54, 1389–1398.PubMedCrossRefGoogle Scholar
  37. Heinrichs, M., Meinlschmidt, G., Neumann, I., Wagner, S., Kirschbaum, C., Ehlert, U. et al. (2001). Effects of suckling on hypothalamic-pituitary-adrenal axis responses to psychosocial stress in postpartum lactating women. Journal of Clinical Endocrinology and Metabolism, 86, 4798–4804.PubMedCrossRefGoogle Scholar
  38. Heinrichs, M., Soravia, L. M., Neumann, I. D., Stangier, U., de Quervain, D. J.-F. & Ehlert, U. (2006). Effects of oxytocin on social phobia.Paper presented at the Annual Meeting of the American College of Neuropsychopharmacology (ACNP), Hollywood, Florida, 3.-7. Dezember.Google Scholar
  39. Huber, D., Veinante, P. & Stoop, R. (2005). Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science, 308, 245–248.PubMedCrossRefGoogle Scholar
  40. Insel, T. R. (1997). A neurobiological basis of social attachment. American Journal of Psychiatry, 154, 726–735.PubMedGoogle Scholar
  41. Insel, T. R. & Hulihan, T. J. (1995). A gender-specific mechanism for pair bonding: oxytocin and partner preference formation in monogamous voles. Behavioral Neuroscience, 109, 782–789.PubMedCrossRefGoogle Scholar
  42. Insel, T. R. & Shapiro, L. E. (1992). Oxytocin receptor distribution reflects social organization in monogamous and polygamous voles. Proceedings of the National Accademy of Science of the United States of America, 89, 5981–5985.CrossRefGoogle Scholar
  43. Izard, C. E. (1991). The psychology of emotions. New York, NY: Plenum Press.Google Scholar
  44. James, W. (1884). What is an emotion? Mind, 9, 188–205. Kirsch, P., Esslinger, C., Chen, Q., Mier, D., Lis, S., Siddhanti, S. et al. (2005). Oxytocin modulates neural circuitry for social cognition and fear in humans. Journal of Neuroscience, 25, 11489–11493.Google Scholar
  45. Kirsch, P., Reuter, M., Mier, D., Lonsdorf, T., Stark, R., Gallhofer, B. et al. (2006). Imaging gene-substance interactions: the effect of the DRD2 TaqIA polymorphism and the dopamine agonist bromocriptine on the brain activation during the anticipation of reward. Neuroscience Letters, 405, 196–201.PubMedCrossRefGoogle Scholar
  46. Kjaer, T. W., Bertelsen, C., Piccini, P., Brooks, D., Alving, J. & Lou, H. C. (2002). Increased dopamine tone during meditation- induced change of consciousness. Cognitive Brain Research, 13, 255–259.PubMedCrossRefGoogle Scholar
  47. Koob, G. F. & Goeders, N. E. (1989). Neuroanatomical substrates of drug self-administration. In J. M. Liebman & S. J. Cooper (Eds.), The neuropharmacological basis of reward(S. 214–263). Oxford: Oxford University Press.Google Scholar
  48. Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U. & Fehr, E. (2005). Oxytocin increases trust in humans. Nature, 435, 673–676. PubMedCrossRefGoogle Scholar
  49. Kovacs, G. L. & De Wied, D. (1994). Peptidergic modulation of learning and memory processes. Pharmacological Reviews, 46, 269–291.PubMedGoogle Scholar
  50. Lange, C. (1887). Ueber Gemüthsbewegungen. Leipzig: Thomas.Google Scholar
  51. LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Reviews of Neuroscience, 23, 155–184.CrossRefGoogle Scholar
  52. Le Moal, M. & Simon, H. (1991). Mesocorticolimbic dopaminergic network: functional and regulatory roles. Physiology Reviews, 71, 155–234.Google Scholar
  53. Liu, Y. & Wang, Z. X. (2003). Nucleus accumbens oxytocin and dopamine interact to regulate pair bond formation in female prairie voles. Neuroscience, 121, 537–544.PubMedCrossRefGoogle Scholar
  54. McBride, W. J., Murphy, J. M. & Ikemoto, S. (1999). Localization of brain reinforcement mechanisms: intracranial self-administration and intracranial place-conditioning studies. Behavioural Brain Research, 101, 129–152.PubMedCrossRefGoogle Scholar
  55. McCarthy, M. M. (1995). Estrogen modulation of oxytocin and its relation to behavior. In R. Ivell & J. A. Russell (Eds.), Oxytocin. Cellular and molecular approaches in medicine and research(S. 235–245). New York: Plenum Press.Google Scholar
  56. McCarthy, M. M., McDonald, C. H., Brooks, P. J. & Goldman, D. (1996). An anxiolytic action of oxytocin is enhanced by estrogen in the mouse. Physiology and Behavior, 60, 1209–1215.PubMedCrossRefGoogle Scholar
  57. Menon, V. & Levitin, D. J. (2005). The rewards of music listening: response and physiological connectivity of the mesolimbic system. Neuroimage, 28, 175–184. PubMedCrossRefGoogle Scholar
  58. Mitchell, M. D., Haynes, P. J., Anderson, A. B. M. & Turnbull, A. C. (1981). Plasma oxytocin concentrations during the menstrual cycle. European Journal of Obstetrics & Gynecology and Reproductive Biology, 12, 195–200.CrossRefGoogle Scholar
  59. Moore, H., West, A. R. & Grace, A. A. (1999). The regulation of forebrain dopamine transmission: relevance to the pathophysiology and psychopathology of schizophrenia. Biological Psychiatry, 46, 40–55.PubMedCrossRefGoogle Scholar
  60. Murphy, M. R., Checkley, S. A., Seckl, J. R. & Lightman, S. L. (1990). Naloxone inhibits oxytocin release at orgasm in man. Journal of Clinical Endocrinology and Metabolism, 71, 1056–1058.PubMedCrossRefGoogle Scholar
  61. Nesse, R. M. (2004). Natural selection and the elusiveness of happiness. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 359, 1333–1347.CrossRefGoogle Scholar
  62. Neumann, I. D. (2002). Involvement of the brain oxytocin system in stress coping: Interactions with the hypothalamopituitary- adrenal axis. In D. Poulain, S. Oliet & D. Theodosis (Eds.), Vasopressin and oxytocin. From genes to clinical applications(S. 147–162). Amsterdam: Elsevier.CrossRefGoogle Scholar
  63. Nishioka, T., Anselmo-Franci, J. A., Li, P., Callahan, M. F. & Morris, M. (1998). Stress increases oxytocin release within the hypothalamic paraventricular nucleus. Brain Research, 781, 56–60.PubMedCrossRefGoogle Scholar
  64. Olazabal, D. E. & Young, L. J. (2006). Oxytocin receptors in the nucleus accumbens facilitate »spontaneous« maternal behavior in adult female prairie voles. Neuroscience, 141, 559–568.PubMedCrossRefGoogle Scholar
  65. Olds, J. & Milner, P. (1954). Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. Journal of Comparative and Physiological Psychology, 47, 419–427.PubMedCrossRefGoogle Scholar
  66. Panksepp, J. (2005). Affective neuroscience: the foundations of human and animal emotions. Oxford: Oxford University Press.Google Scholar
  67. Pedersen, C. A. & Prange, A. J., Jr. (1979). Induction of maternal behavior in virgin rats after intracerebroventricular administration of oxytocin. Proceedings of the National Academy of Sciences of the United States of America, 76, 6661–6665.PubMedCrossRefGoogle Scholar
  68. Phillips, A. G. & Fibiger, H. C. (1978). The role of dopamine in maintaining intracranial self-stimulation in the ventral tegmentum, nucleus accumbens, and medial prefrontal cortex. Canadian Journal of Psychology, 32, 58–66.PubMedCrossRefGoogle Scholar
  69. Pitman, R. K., Orr, S. P. & Lasko, N. B. (1993). Effects of intranasal vasopressin and oxytocin on physiologic responding during personal combat imagery in Vietnam veterans with posttraumatic stress disorder. Psychiatry Research, 48, 107–117.PubMedCrossRefGoogle Scholar
  70. Redgrave, P., Prescott, T. J. & Gurney, K. (1999). Is the shortlatency dopamine response too short to signal reward error? Trends in Neurosciences, 22, 146–151.PubMedCrossRefGoogle Scholar
  71. Reuter, M. & Hennig, J. (2005). Association of the functional catechol-O-methyltransferase VAL158MET polymorphism with the personality trait of extraversion. Neuroreport, 16, 1135–1138.PubMedCrossRefGoogle Scholar
  72. Reuter, M., Schmitz, A., Corr, P. & Hennig, J. (2006). Molecular genetics support Gray's personality theory: the interaction of COMT and DRD2 polymorphisms predicts the behavioural approach system. International Journal of Neuropsychopharmacology, 9, 155–166.PubMedCrossRefGoogle Scholar
  73. Reymond, M. J. & Porter, J. C. (1985). Involvement of hypothalamic dopamine in the regulation of prolactin secretion. Hormone Research, 22, 142–152.PubMedCrossRefGoogle Scholar
  74. Roth, R. H. & Elsworth, J. D. (1995). Biochemical pharmacology of midbrain dopamine neurons. In F. E. Bloom & D. J. Kupfer (Eds.), Psychopharmacology: The fourth generation of progress(S. 227–243). New York: Raven Press.Google Scholar
  75. Salonia, A., Nappi, R. E., Pontillo, M., Daverio, R., Smeraldi, A., Briganti, A. et al. (2005). Menstrual cycle-related changes in plasma oxytocin are relevant to normal sexual function in healthy women. Hormones and Behavior, 47,164–169.PubMedCrossRefGoogle Scholar
  76. Schneider, F., Habel, U., Volkmann, J., Regel, S., Kornischka, J., Sturm, V. et al. (2003). Deep brain stimulation of the subthalamic nucleus enhances emotional processing in Parkinson disease. Archives of General Psychiatry, 60, 296–302. PubMedCrossRefGoogle Scholar
  77. Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80, 1–27. PubMedGoogle Scholar
  78. Shahrokh, D. K., Zhang, T.-Y., Diorio, J., Gratton, A. & Meaney, M. J. (2010). Oxytocin-dopamine interactions mediate variations in maternal behavior in the rat. Endocrinology, 151, 2276–2286.PubMedCrossRefGoogle Scholar
  79. Small, D. M., Jones-Gotman, M. & Dagher, A. (2003). Feedinginduced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. Neuroimage, 19, 1709–1715.PubMedCrossRefGoogle Scholar
  80. Smith, G. P. (1976). The arousal function of central catecholamine neurons. Annals of the New York Academy of Sciences, 270, 45–56.PubMedCrossRefGoogle Scholar
  81. Stemmler, G. (2002). Persönlichkeit und Emotion: Bausteine einer biobehavioralen Theorie. In M. Myrtek (Hrsg.), Die Person im biologischen und sozialen Kontext(S. 115–141). Göttingen: Hogrefe.Google Scholar
  82. Uvnäs-Moberg, K., Ahlenius, S., Hillegaart, V. & Alster, P. (1994). High doses of oxytocin cause sedation and low doses cause an anxiolytic-like effect in male rats. Pharmacology, Biochemistry and Behavior, 49, 101–106.CrossRefGoogle Scholar
  83. Uvnäs-Moberg, K., Arn, I. & Magnusson, D. (2005). The psychobiology of emotion: the role of the oxytocinergic system. International Journal of Behavioral Medicine, 12, 59–65.CrossRefGoogle Scholar
  84. Vaitl, D. (1996). Interoception. Biological Psychology, 42, 1–27.PubMedCrossRefGoogle Scholar
  85. Verhoeff, N. P., Christensen, B. K., Hussey, D., Lee, M., Papatheodorou, G., Kopala, L. et al. (2003). Effects of catecholamine depletion on D2 receptor binding, mood, and attentiveness in humans: a replication study. Pharmacology, Biochemistry and Behavior, 74, 425–432.CrossRefGoogle Scholar
  86. Voruganti, L., Slomka, P., Zabel, P., Costa, G., So, A., Mattar, A. et al. (2001). Subjective effects of AMPT-induced dopamine depletion in schizophrenia: correlation between dysphoric responses and striatal D(2) binding ratios on SPECT imaging. Neuropsychopharmacology, 25, 642–650.PubMedCrossRefGoogle Scholar
  87. Windle, R. J., Shanks, N., Lightman, S. L. & Ingram, C. D. (1997). Central oxytocin administration reduces stress-induced corticosterone release and anxiety behavior in rats. Endocrinology, 138, 2829–2834.PubMedCrossRefGoogle Scholar
  88. Wise, R. A. (1980). The dopamine synapse and the notion of ‘pleasure centers’ in the brain. Trends in Neurosciences, 3, 91–95.CrossRefGoogle Scholar
  89. Young, L. J., Lim, M. M., Gingrich, B. & Insel, T. R. (2001). Cellular mechanisms of social attachment. Hormones and Behavior, 40, 133–138.PubMedCrossRefGoogle Scholar
  90. Zak, P. J., Kurzban, R. & Matzner, W. T. (2004). The Neurobiology of Trust. Annals of the New York Academy of Sciences, 1032, 224–227.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Peter Kirsch
    • 1
  • Harald Gruppe
    • 2
  1. 1.Abteilung Klinische PsychologieZentralinstitut für Seelische GesundheitMannheim
  2. 2.Zentrum für Psychiatrie und Psychotherapie Arbeitsgruppe kognitive NeurowissenschaftenJustus-Liebig-Universität GießenGießen

Personalised recommendations