Skip to main content

Abstract

The gravitational lensing phenomenon can provide us with the information about luminous and dark matter in our Universe. But robust and effective tools are needed to extract that valuable information from observations. In this chapter, two inverse problems arising in gravitational lensing research are considered. Both problems are ill-posed, so regularization is needed. The first problem is the one of image reconstruction. Based on the Tikhonov regularization approach, several modifications of the regularizing algorithm, taking account of specific properties of gravitational lens systems, are proposed. The numerical results show that incorporation of all available a priori information allows reconstructing images of gravitational lens systems quite well. Furthermore, the algorithm decomposes the images into two parts — point sources and smooth background, that is needed for further investigations. The second problem concerns reconstruction of a distant quasar light distribution based on observations of microlensing events. In this case, a gravitational lens system as a gravitational telescope and the Tikhonov regularization method as a tool allow getting valuable information about the distant quasar unresolved by an instrument.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Agol and J. Krolik, Imaging a quasar accretion disk with microlensing, The Astrophysical Journal, 524(1), 49–64.

    Google Scholar 

  2. K. Chang and S. Refsdal, Star disturbances in gravitational lens galaxies, Astronomy and Astrophysics, 132(1), 168–178, 1984.

    Google Scholar 

  3. F. W. Dyson, A. S. Eddington and C. R. Davidson, A determination of the deflection of light by the sun’s gravitational field from observations made at the total eclipse of May 29, 1919. Mem. R. Astron. Soc., 62, 291, 1920.

    Google Scholar 

  4. A. Einstein, Uber den Einflub der Schwerkraft auf die Ausbreitung des Lichtes (On the Influence of Gravity on the Propagation of Light), Annalen der Physik, 35, 898, 1911.

    Article  Google Scholar 

  5. A. V. Goncharskiy, A. S. Leonov and A. G. Yagola, On the solution of two-dimesional first kind Fredholm integral equations with kernel depending on the arguments difference, Zhurnal vychislitelnoy matematiki i matematicheskoy fiziki, 11(5), 1971 (in Russian).

    Google Scholar 

  6. B. Grieger, R. Kayser and T. Schramm, The deconvolution of the quasar structure from microlensing light curves, Astronomy and Astrophysics, 252(2), 508–512, 1991.

    Google Scholar 

  7. J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations, Yale Univ. Press, New Haven, 1923.

    MATH  Google Scholar 

  8. C. S. Kochanek, E. E. Falco, C. Impey, J. Lehar, B. McLeod and H.-W. Rix, CfAArizona Space Telescope LEns Survey, http://www.cfa.harvard.edu/glensdata/.

    Google Scholar 

  9. E. Koptelova, E. Shimanovskaya, B. Artamonov, M. Sazhin, A. Yagola, V. Bruevich, O. Burkhonov, Image reconstruction technique and optical monitoring of the QSO2237+0305 from Maidanak Observatory in 2002–2003, Monthly Notices of the Royal Astronomical Society, 356(1), 323–330, 2005.

    Article  Google Scholar 

  10. E. Koptelova, E. Shimanovskaya, B. Artamonov and A. Yagola, Analysis of the Q2237+0305 light-curve variability with regularization technique, Monthly Notices of the Royal Astronomical Society, 381(4), 1655–1662, 2007.

    Article  Google Scholar 

  11. A. S. Leonov, Numerical piecewise-uniform regularization for two-dimensional ill-posed problems, Inverse Problems, 15, 1165–1176, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. S. Leonov, A. N. Tikhonov and A. G. Yagola, Nonlinear Ill-Posed Problems, Chapman & Hall, London, 1998.

    MATH  Google Scholar 

  13. S. Mineshige and A. Yonehara, Gravitational microlens mapping of a quasar accretion disk, Publ. of the Astronomical Society of Japan, 51, 497–504, 1999.

    Google Scholar 

  14. V. N. Shalyapin, L. J. Goicoechea, D. Alcalde, E. Mediavilla, J. A. Munoz and R. GilMerino, The nature and size of the optical continuum source in QSO 2237+0305, The Astrophysical Journal, 579(1), 127–135, 2002.

    Article  Google Scholar 

  15. A. N. Tikhonov, et al., Numerical Methods for the Solution of Ill-Posed-Problems, Kluwer Academic Press, Dordrecht, 1995.

    MATH  Google Scholar 

  16. A. N. Tikhonov, On the solution of ill-posed problems and on the regularization method, Doklady akademii nauk SSSR, 151(3), 1963 (in Russian).

    Google Scholar 

  17. V. G. Vakulik, R. E. Schild, V. N Dudinov, A. A. Minakov, S. N. Nuritdinov, V. S. Tsvetkova, A. P. Zheleznyak, V. V. Konichek, I. Ye. Sinelnikov, O. A. Burkhonov, B. P. Artamonov and V. V. Bruevich, Color effects associated with the 1999 microlensing brightness peaks in gravitationally lensed quasar Q2237+0305, Astronomy and Astrophysics, 420, 447–457, 2004.

    Article  Google Scholar 

  18. J. Wambsganss, H. J. Witt and P. Schneider, Gravitational microlensing — Powerful combination of ray-shooting and parametric representation of caustics, Astronomy and Astrophysics, 258(2), 591–599, 1992.

    Google Scholar 

  19. J. Wambsganss, Gravitational lensing in astronomy, Living Rev. Relativity, 1, http://www.livingreviews.org/lrr-1998-12, 1998.

    Google Scholar 

  20. H. J. Witt, R. Kayser and S. Refsdal, Microlensing predictions for the Einstein cross 2237+0305, Astronomy and Astrophysics, 268(2), 501–510, 1993.

    Google Scholar 

  21. http://www.astrouw.edu.pl/~ogle/ogle3/huchra.html.

  22. http://www.iac.es/proyect/gravslens/GLITP/.

  23. J. S. B. Wyithe, R. L. Webster, E. L. Turner, MNRAS, Interpretation of the OGLE Q2237+0305 microlensing light curve (1997–1999), Monthly Notices of the Royal Astronomical Society, 318(4), 1120–1130, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Artamonov, B., Koptelova, E., Shimanovskaya, E., Yagola, A.G. (2010). Tikhonov Regularization for Gravitational Lensing Research. In: Wang, Y., Yang, C., Yagola, A.G. (eds) Optimization and Regularization for Computational Inverse Problems and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13742-6_14

Download citation

Publish with us

Policies and ethics