Advertisement

The Emergence of Sparse Spanners and Greedy Well-Separated Pair Decomposition

  • Jie Gao
  • Dengpan Zhou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6139)

Abstract

A spanner graph on a set of points in ℝ d provides shortest paths between any pair of points with lengths at most a constant factor of their Euclidean distance. A spanner with a sparse set of edges is thus a good candidate for network backbones, as in transportation networks and peer-to-peer network overlays. In this paper we investigate new models and aim to interpret why good spanners ‘emerge’ in reality, when they are clearly built in pieces by agents with their own interests and the construction is not coordinated. Our main result is to show that the following algorithm generates a (1 + ε)-spanner with a linear number of edges. In our algorithm, the points build edges at an arbitrary order. A point p will only build an edge pq if there is no existing edge pq′ with p′ and q′ at distances no more than \(\frac{1}{4(1+1/\varepsilon)} \cdot |pq|\) from p, q respectively. Eventually when all points finish checking edges to all other points, the resulted collection of edges forms a sparse spanner as desired. As a side product, the spanner construction implies a greedy algorithm for constructing linear-size well-separated pair decompositions that may be of interest on its own.

Keywords

Spanner Well-separated pair decomposition Greedy algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Abraham, I., Gavoille, C., Goldberg, A.V., Malkhi, D.: Routing in networks with low doubling dimension. In: Proc. of the 26th International Conference on Distributed Computing Systems (ICDCS) (July 2006)Google Scholar
  3. 3.
    Abraham, I., Malkhi, D.: Compact routing on euclidian metrics. In: PODC ’04: Proceedings of the twenty-third annual ACM symposium on Principles of distributed computing, pp. 141–149. ACM, New York (2004)CrossRefGoogle Scholar
  4. 4.
    Albers, S., Eilts, S., Even-Dar, E., Mansour, Y., Roditty, L.: On nash equilibria for a network creation game. In: SODA ’06: Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, pp. 89–98. ACM, New York (2006)CrossRefGoogle Scholar
  5. 5.
    Arya, S., Das, G., Mount, D.M., Salowe, J.S., Smid, M.: Euclidean spanners: short, thin, and lanky. In: Proc. 27th ACM Symposium on Theory Computing, pp. 489–498 (1995)Google Scholar
  6. 6.
    Arya, S., Mount, D.M., Smid, M.: Randomized and deterministic algorithms for geometric spanners of small diameter. In: Proc. 35th IEEE Symposium on Foundations of Computer Science, pp. 703–712 (1994)Google Scholar
  7. 7.
    Arya, S., Smid, M.: Efficient construction of a bounded-degree spanner with low weight. Algorithmica 17, 33–54 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In transit to constant time shortest-path queries in road networks. In: Applegate, D., Brodal, G. (eds.) 9th Workshop on Algorithm Enginneering and Experiments (ALENEX’07), New Orleans, USA, pp. 46–59. SIAM, Philadelphia (2007)Google Scholar
  9. 9.
    Callahan, Kosaraju: Faster algorithms for some geometric graph problems in higher dimensions. In: Proc. 4th ACM-SIAM Symposium on Discrete Algorithms, pp. 291–300 (1993)Google Scholar
  10. 10.
    Callahan, P.B.: Optimal parallel all-nearest-neighbors using the well-separated pair decomposition. In: Proc. 34th IEEE Symposium on Foundations of Computer Science, pp. 332–340 (1993)Google Scholar
  11. 11.
    Callahan, P.B., Kosaraju, S.R.: Algorithms for dynamic closest-pair and n-body potential fields. In: Proc. 6th ACM-SIAM Symposium on Discrete Algorithms, pp. 263–272 (1995)Google Scholar
  12. 12.
    Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. J. ACM 42, 67–90 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Chandra, B., Das, G., Narasimhan, G., Soares, J.: New sparseness results on graph spanners. Internat. J. Comput. Geom. Appl. 5, 125–144 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Chu, Y., Rao, S., Seshan, S., Zhang, H.: Enabling conferencing applications on the internet using an overlay muilticast architecture. SIGCOMM Comput. Commun. Rev. 31(4), 55–67 (2001)CrossRefGoogle Scholar
  15. 15.
    Corbo, J., Parkes, D.: The price of selfish behavior in bilateral network formation. In: PODC ’05: Proceedings of the twenty-fourth annual ACM symposium on Principles of distributed computing, pp. 99–107. ACM, New York (2005)CrossRefGoogle Scholar
  16. 16.
    Das, G., Heffernan, P., Narasimhan, G.: Optimally sparse spanners in 3-dimensional Euclidean space. In: Proc. 9th Annu. ACM Sympos. Comput. Geom., pp. 53–62 (1993)Google Scholar
  17. 17.
    Das, G., Narasimhan, G.: A fast algorithm for constructing sparse Euclidean spanners. Internat. J. Comput. Geom. Appl. 7, 297–315 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Das, G., Narasimhan, G., Salowe, J.: A new way to weigh malnourished Euclidean graphs. In: Proc. 6th ACM-SIAM Sympos. Discrete Algorithms, pp. 215–222 (1995)Google Scholar
  19. 19.
    Eppstein, D.: Spanning trees and spanners. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 425–461. Elsevier Science Publishers B.V., North-Holland (2000)CrossRefGoogle Scholar
  20. 20.
    Erickson, J.: Dense point sets have sparse Delaunay triangulations. In: Proc. 13th ACM-SIAM Symposium on Discrete Algorithms, pp. 125–134 (2002)Google Scholar
  21. 21.
    Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C.H., Shenker, S.: On a network creation game. In: PODC ’03: Proceedings of the twenty-second annual symposium on Principles of distributed computing, pp. 347–351 (2003)Google Scholar
  22. 22.
    Gao, J., Guibas, L., Nguyen, A.: Deformable spanners and their applications. Computational Geometry: Theory and Applications 35(1-2), 2–19 (2006)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Gottlieb, L.-A., Roditty, L.: Improved algorithms for fully dynamic geometric spanners and geometric routing. In: SODA ’08: Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, Philadelphia, PA, USA, pp. 591–600. Society for Industrial and Applied Mathematics (2008)Google Scholar
  24. 24.
    Gudmundsson, J., Levcopoulos, C., Narasimhan, G., Smid, M.: Approximate distance oracles for geometric graphs. In: Proc. 13th ACM-SIAM Symposium on Discrete Algorithms, pp. 828–837 (2002)Google Scholar
  25. 25.
    Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded geometries, fractals, and low-distortion embeddings. In: FOCS ’03: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, pp. 534–543 (2003)Google Scholar
  26. 26.
    Jansen, T., Theile, M.: Stability in the self-organized evolution of networks. In: GECCO ’07: Proceedings of the 9th annual conference on Genetic and evolutionary computation, pp. 931–938. ACM, New York (2007)CrossRefGoogle Scholar
  27. 27.
    Konjevod, G., Richa, A.W., Xia, D.: Optimal-stretch name-independent compact routing in doubling metrics. In: PODC ’06: Proceedings of the twenty-fifth annual ACM symposium on Principles of distributed computing, pp. 198–207 (2006)Google Scholar
  28. 28.
    Kwon, M., Fahmy, S.: Topology-aware overlay networks for group communication. In: NOSSDAV ’02: Proceedings of the 12th international workshop on Network and operating systems support for digital audio and video, pp. 127–136. ACM, New York (2002)CrossRefGoogle Scholar
  29. 29.
    Levcopoulos, C., Narasimhan, G., Smid, M.H.M.: Improved algorithms for constructing fault-tolerant spanners. Algorithmica 32(1), 144–156 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Lua, K., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A survey and comparison of peer-to-peer overlay network schemes. IEEE Communications Surveys & Tutorials, 72–93 (2005)Google Scholar
  31. 31.
    Moscibroda, T., Schmid, S., Wattenhofer, R.: On the topologies formed by selfish peers. In: PODC ’06: Proceedings of the twenty-fifth annual ACM symposium on Principles of distributed computing, pp. 133–142. ACM, New York (2006)CrossRefGoogle Scholar
  32. 32.
    Narasimhan, G., Smid, M.: Approximating the stretch factor of Euclidean graphs. SIAM J. Comput. 30, 978–989 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press, Cambridge (2007)zbMATHCrossRefGoogle Scholar
  34. 34.
    Peleg, D.: Distributed Computing: A Locality Sensitive Approach. In: Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (2000)Google Scholar
  35. 35.
    Ratnasamy, S., Handley, M., Karp, R., Shenker, S.: Topologically-aware overlay construction and server selection. In: Proceedings of the 21th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM’05), vol. 3, pp. 1190–1199 (2002)Google Scholar
  36. 36.
    Sanders, P., Schultes, D.: Engineering highway hierarchies. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 804–816. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  37. 37.
    Slivkins, A.: Distance estimation and object location via rings of neighbors. In: PODC ’05: Proceedings of the twenty-fourth annual ACM symposium on Principles of distributed computing, pp. 41–50 (2005)Google Scholar
  38. 38.
    Tanenbaum, A.S.: Computer networks (3rd ed.). Prentice-Hall, Inc., Upper Saddle River (1996)Google Scholar
  39. 39.
    Wang, W., Jin, C., Jamin, S.: Network overlay construction under limited end-to-end reachability. In: Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM’05), March 2005, vol. 3, pp. 2124–2134 (2005)Google Scholar
  40. 40.
    Zhang, X., Li, Z., Wang, Y.: A distributed topology-aware overlays construction algorithm. In: MG ’08: Proceedings of the 15th ACM Mardi Gras conference, pp. 1–6. ACM, New York (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jie Gao
    • 1
  • Dengpan Zhou
    • 1
  1. 1.Department of Computer ScienceStony Brook UniversityStony BrookUSA

Personalised recommendations