Polynomial Kernels for Hard Problems on Disk Graphs

  • Bart Jansen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6139)


Kernelization is a powerful tool to obtain fixed-parameter tractable algorithms. Recent breakthroughs show that many graph problems admit small polynomial kernels when restricted to sparse graph classes such as planar graphs, bounded-genus graphs or H-minor-free graphs. We consider the intersection graphs of (unit) disks in the plane, which can be arbitrarily dense but do exhibit some geometric structure. We give the first kernelization results on these dense graph classes. Connected Vertex Cover has a kernel with 12k vertices on unit-disk graphs and with 3k 2 + 7k vertices on disk graphs with arbitrary radii. Red-Blue Dominating Set parameterized by the size of the smallest color class has a linear-vertex kernel on planar graphs, a quadratic-vertex kernel on unit-disk graphs and a quartic-vertex kernel on disk graphs. Finally we prove that H -Matching on unit-disk graphs has a linear-vertex kernel for every fixed graph H.


Planar Graph Vertex Cover Intersection Graph Polynomial Kernel Reduction Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Downey, R., Fellows, M.R.: Parameterized complexity. Monographs in Computer Science. Springer, New York (1999)Google Scholar
  2. 2.
    Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. SIGACT News 38, 31–45 (2007)CrossRefGoogle Scholar
  3. 3.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comput. Syst. Sci. 75, 423–434 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Guo, J., Niedermeier, R.: Linear problem kernels for NP-hard problems on planar graphs. In: Proc. 34th ICALP, pp. 375–386 (2007)Google Scholar
  5. 5.
    Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (Meta) Kernelization. In: Proc. 50th FOCS, pp. 629–638 (2009)Google Scholar
  6. 6.
    Fomin, F., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and kernels. In: Proc. 21st SODA, pp. 503–510 (2010)Google Scholar
  7. 7.
    van Leeuwen, E.J.: Optimization and Approximation on Systems of Geometric Objects. PhD thesis, CWI Amsterdam (2009)Google Scholar
  8. 8.
    Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Mathematics 86, 165–177 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Marx, D.: Efficient approximation schemes for geometric problems? In: Proc. 13th ESA, pp. 448–459 (2005)Google Scholar
  10. 10.
    Marx, D.: Parameterized complexity of independence and domination on geometric graphs. In: Proc. 2nd IWPEC, pp. 154–165 (2006)Google Scholar
  11. 11.
    Alber, J., Fiala, J.: Geometric separation and exact solutions for the parameterized independent set problem on disk graphs. J. Algorithms 52, 134–151 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Philip, G., Raman, V., Sikdar, S.: Solving dominating set in larger classes of graphs: Fpt algorithms and polynomial kernels. In: Proc. 17th ESA, pp. 694–705 (2009)Google Scholar
  13. 13.
    Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through colors and ids. In: Proc. 36th ICALP, pp. 378–389 (2009)Google Scholar
  14. 14.
    Marathe, M., Breu, H., Iii, H.B.H., Ravi, S.S., Rosenkrantz, D.J.: Simple heuristics for unit disk graphs. Networks 25, 59–68 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Wiese, A., Kranakis, E.: Local PTAS for independent set and vertex cover in location aware unit disk graphs. In: Proc. 4th DCOSS, pp. 415–431 (2008)Google Scholar
  16. 16.
    Kratochvíl, J., Pergel, M.: Intersection graphs of homothetic polygons. Electronic Notes in Discrete Mathematics 31, 277–280 (2008)Google Scholar
  17. 17.
    Moser, H.: A problem kernelization for graph packing. In: Proc. 35th SOFSEM, pp. 401–412 (2009)Google Scholar
  18. 18.
    Hunt, H.B., Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: NC-approximation schemes for NP- and PSPACE-hard problems for geometric graphs. Journal of Algorithms 26, 238–274 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent set of pseudo-disks. In: Proceedings 25th SCG, pp. 333–340 (2009)Google Scholar
  20. 20.
    Efrat, A., Sharir, M., Ziv, A.: Computing the smallest k-enclosing circle and related problems. Comput. Geom. 4, 119–136 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    de Berg, M., Speckmann, B.: Computational geometry: Fundamental structures. In: Handbook of Data Structures and Applications, pp. 62.1–62.20 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Bart Jansen
    • 1
  1. 1.Utrecht UniversityUtrechtThe Netherlands

Personalised recommendations