Advertisement

Cops and Robber Game without Recharging

  • Fedor V. Fomin
  • Petr A. Golovach
  • Daniel Lokshtanov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6139)

Abstract

Cops & Robber is a classical pursuit-evasion game on undirected graphs, where the task is to identify the minimum number of cops sufficient to catch the robber. In this work, we consider a natural variant of this game, where every cop can make at most f steps, and prove that for each f ≥ 2, it is PSPACE-complete to decide whether k cops can capture the robber.

Keywords

Connected Graph Undirected Graph Adjacent Vertex Domination Number Winning Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aigner, M., Fromme, M.: A game of cops and robbers. Discrete Appl. Math. 8, 1–11 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alspach, B.: Searching and sweeping graphs: a brief survey. Matematiche (Catania) 59, 5–37 (2006)MathSciNetGoogle Scholar
  3. 3.
    Dumitrescu, A., Suzuki, I., Zylinski, P.: Offline variants of the ”lion and man” problem. In: Proceedings of the 23d annual symposium on Computational Geometry (SCG 07), pp. 102–111. ACM, New York (2007)CrossRefGoogle Scholar
  4. 4.
    Fomin, F.V., Golovach, P.A., Kratochvíl, J.: On tractability of cops and robbers game. In: Ausiello, G., Karhumäki, J., Mauri, G., Ong, C.-H.L. (eds.) IFIP TCS. IFIP, vol. 273, pp. 171–185. Springer, Heidelberg (2008)Google Scholar
  5. 5.
    Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph searching. Theor. Comput. Sci. 399, 236–245 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Garey, M.R., Johnson, D.S.: Computers and intractability. W. H. Freeman and Co, San Francisco (1979); A guide to the theory of NP-completeness, A Series of Books in the Mathematical ScienceszbMATHGoogle Scholar
  7. 7.
    Goldenberg, M., Kovarsky, A., Wu, X., Schaeffer, J.: Multiple agents moving target search. In: Proceedings of the 18th international joint conference on Artificial Intelligence (IJCAI ’03), pp. 1536–1538. Morgan Kaufmann Publishers Inc., San Francisco (2003)Google Scholar
  8. 8.
    Goldstein, A.S., Reingold, E.M.: The complexity of pursuit on a graph. Theoret. Comput. Sci. 143, 93–112 (1995)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Guibas, L.J., Claude Latombe, J., Lavalle, S.M., Lin, D., Motwani, R.: A visibility-based pursuit-evasion problem. International Journal of Computational Geometry and Applications 9, 471–494 (1996)Google Scholar
  10. 10.
    Isaacs, R.: Differential games. A mathematical theory with applications to warfare and pursuit, control and optimization. John Wiley & Sons Inc., New York (1965)zbMATHGoogle Scholar
  11. 11.
    Ishida, T., Korf, R.E.: Moving target search. In: Proceedings of the International joint conference on Artificial Intelligence (IJCAI’91), pp. 204–211 (1991)Google Scholar
  12. 12.
    Ishida, T., Korf, R.E.: Moving-target search: A real-time search for changing goals. IEEE Trans. Pattern Anal. Mach. Intell. 17, 609–619 (1995)CrossRefGoogle Scholar
  13. 13.
    Littlewood, J.E.: Littlewood’s miscellany. Cambridge University Press, Cambridge (1986); Edited and with a foreword by Béla BollobásGoogle Scholar
  14. 14.
    Loh, P.K.K., Prakash, E.C.: Novel moving target search algorithms for computer gaming. Comput. Entertain. 7, 1–16 (2009)CrossRefGoogle Scholar
  15. 15.
    Megiddo, N., Hakimi, S.L., Garey, M.R., Johnson, D.S., Papadimitriou, C.H.: The complexity of searching a graph. J. Assoc. Comput. Mach. 35, 18–44 (1988)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Moldenhauer, C., Sturtevant, N.R.: Evaluating strategies for running from the cops. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 584–589 (2009)Google Scholar
  17. 17.
    Moldenhauer, C., Sturtevant, N.R.: Optimal solutions for moving target search. In: Proceedings of the 8th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2009), IFAAMAS, pp. 1249–1250 (2009)Google Scholar
  18. 18.
    Nowakowski, R., Winkler, P.: Vertex-to-vertex pursuit in a graph. Discrete Math. 43, 235–239 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Quilliot, A.: Some results about pursuit games on metric spaces obtained through graph theory techniques. European J. Combin. 7, 55–66 (1986)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Sgall, J.: Solution of David Gale’s lion and man problem. Theor. Comput. Sci. 259, 663–670 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Sugihara, K., Suzuki, I., Yamashita, M.: The searchlight scheduling problem. SIAM J. Comput. 19, 1024–1040 (1990)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Fedor V. Fomin
    • 1
  • Petr A. Golovach
    • 2
  • Daniel Lokshtanov
    • 1
  1. 1.Department of InformaticsUniversity of BergenBergenNorway
  2. 2.School of Engineering and Computing SciencesDurham UniversityDurhamUK

Personalised recommendations