Advertisement

A Weakly Robust PTAS for Minimum Clique Partition in Unit Disk Graphs

(Extended Abstract)
  • Imran A. Pirwani
  • Mohammad R. Salavatipour
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6139)

Abstract

We consider the problem of partitioning the set of vertices of a given unit disk graph (UDG) into a minimum number of cliques. The problem is NP-hard and various constant factor approximations are known, with the best known ratio of 3. Our main result is a weakly robust polynomial time approximation scheme (PTAS) for UDGs expressed with edge-lengths and ε> 0 that either (i) computes a clique partition, or (ii) produces a certificate proving that the graph is not a UDG; if the graph is a UDG, then our partition is guaranteed to be within (1 + ε) ratio of the optimum; however, if the graph is not a UDG, it either computes a clique partition, or detects that the graph is not a UDG. Noting that recognition of UDG’s is NP-hard even with edge lengths, this is a significant weakening of the input model.

We consider a weighted version of the problem on vertex weighted UDGs that generalizes the problem. We note some key distinctions with the unweighted version, where ideas crucial in obtaining a PTAS breakdown. Nevertheless, the weighted version admits a (2 + ε)-approximation algorithm even when the graph is expressed, say, as an adjacency matrix. This is an improvement on the best known 8-approximation for the unweighted case for UDGs expressed in standard form.

Keywords

Input Graph Separator Line Optimal Partition Weighted Version Separation Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aspnes, J., Goldenberg, D.K., Yang, Y.R.: On the computational complexity of sensor network localization. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS 2004. LNCS, vol. 3121, pp. 32–44. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Balasundaram, B., Butenko, S.: Optimization problems in unit-disk graphs. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, pp. 2832–2844. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Capoyleas, V., Rote, G., Woeginger, G.J.: Geometric clusterings. J. Algorithms 12(2), 341–356 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cerioli, M.R., Faria, L., Ferreira, T.O., Martinhon, C.A.J., Protti, F., Reed, B.: Partition into cliques for cubic graphs: Planar case, complexity and approximation. Discrete Applied Mathematics 156(12), 2270–2278 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cerioli, M.R., Faria, L., Ferreira, T.O., Protti, F.: On minimum clique partition and maximum independent set on unit disk graphs and penny graphs: complexity and approximation. Electronic Notes in Discrete Mathematics 18, 73–79 (2004)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Dumitrescu, A., Pach, J.: Minimum clique partition in unit disk graphs. CoRR, abs/0909.1552 (2009)Google Scholar
  7. 7.
    Finke, G., Jost, V., Queyranne, M., Sebö, A.: Batch processing with interval graph compatibilities between tasks. Discrete Applied Mathematics 156(5), 556–568 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Nieberg, T., Hurink, J., Kern, W.: Approximation schemes for wireless networks. ACM Transactions on Algorithms 4(4), 1–17 (2008)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Pandit, S., Pemmaraju, S., Varadarajan, K.: Approximation algorithms for domatic partitions of unit disk graphs. In: APPROX-RANDOM, pp. 312–325 (2009)Google Scholar
  10. 10.
    Pemmaraju, S.V., Pirwani, I.A.: Good quality virtual realization of unit ball graphs. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 311–322. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Pirwani, I.A., Salavatipour, M.R.: A weakly robust PTAS for minimum clique partition in unit disk graphs. CoRR, abs/0904.2203 (2009)Google Scholar
  12. 12.
    Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Theory of Computing 3(1), 103–128 (2007)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Imran A. Pirwani
    • 1
  • Mohammad R. Salavatipour
    • 1
  1. 1.Dept. of Computing ScienceUniversity of AlbertaEdmontonCanada

Personalised recommendations