A 3/2-Approximation Algorithm for Multiple Depot Multiple Traveling Salesman Problem

(Extended Abstract)
  • Zhou Xu
  • Brian Rodrigues
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6139)


As an important extension of the classical traveling salesman problem (TSP), the multiple depot multiple traveling salesman problem (MDMTSP) is to minimize the total length of a collection of tours for multiple vehicles to serve all the customers, where each vehicle must start or stay at its distinct depot. Due to the gap between the existing best approximation ratios for the TSP and for the MDMTSP in literature, which are 3/2 and 2, respectively, it is an open question whether or not a 3/2-approximation algorithm exists for the MDMTSP. We have partially addressed this question by developing a 3/2-approximation algorithm, which runs in polynomial time when the number of depots is a constant.


Approximation algorithm multiple depots vehicle routing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arkin, E.M., Hassin, R., Levin, A.: Approximations for minimum and min-max vehicle routing problems. Journal of Algorithms 59(1), 1–18 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem, Technical Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University (1976)Google Scholar
  3. 3.
    Eiselt, H.A., Gendreau, M., Laporte, G.: Arc routing problems, part i: The chinese postman problem. Operations Research 43(2), 231–242 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Eiselt, H.A., Gendreau, M., Laporte, G.: Arc routing problems, part ii: The rural postman problem. Operations Research 43(3), 399–414 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory of NP-completeness. Freeman, New York (1979)zbMATHGoogle Scholar
  6. 6.
    Giosa, I.D., Tansini, I.L., Viera, I.O.: New assignment algorithms for the multi-depot vehicle routing problem. Journal of the Operational Research Society 53(9), 977–984 (2002)zbMATHCrossRefGoogle Scholar
  7. 7.
    Lim, A., Wang, F.: Multi-depot vehicle routing problem: a one-stage approach. IEEE Transactions on Automation Science and Engineering 2(4), 397–402 (2005)CrossRefGoogle Scholar
  8. 8.
    Malik, W., Rathinam, S., Darbha, S.: An approximation algorithm for a symmetric generalized multiple depot, multiple travelling salesman problem. Operations Research Letters 35(6), 747–753 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Papadimitriou, C.H., Steiglitz, K.: Approximation algorithms for the traveling salesman problem. In: Combinatorial Optimization: Algorithms and Complexity, pp. 410–419. Courier Dover Publications (1998)Google Scholar
  10. 10.
    Rathinam, S., Sengupta, R.: 3/2-Approximation Algorithm for a Generalized, Multiple Depot, Hamiltonina Path Problem. Technical report, University of California, Berkeley (2007)Google Scholar
  11. 11.
    Rathinam, S., Sengupta, R.: 5/3-approximation algorithm for a multiple depot, terminal hamiltonian path problem. Technical report, University of California, Berkeley (2007)Google Scholar
  12. 12.
    Rathinam, S., Sengupta, R., Darbha, S.: A resource allocation algorithm for multi-vehicle systems with non holonomic constraints. IEEE Transactions on Automation Sciences and Engineering 4(1), 98–104 (2006)CrossRefGoogle Scholar
  13. 13.
    Rathinama, S., Senguptab, R.: 3/2-approximation algorithm for two variants of a 2-depot hamiltonian path problem. Operations Research Letters 38(1), 63–68 (2010)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Renaud, J., Laporte, G., Boctor, F.F.: A tabu search heuristic for the multi-depot vehicle routing problem. Computers and Operations Research 23(3), 229–235 (1996)zbMATHCrossRefGoogle Scholar
  15. 15.
    Rosenkrantz, D.J., Stearns, R.E., Lewis, P.M.: An analysis of several heuristics for the traveling salesman problem. SIAM Journal on Computing 6(3), 563–581 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Wolsey, L.A., Nemhauser, G.L.: Integer and Combinatorial Optimization, ch. section III.3, p. 664. Wiley-Interscience, Hoboken (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Zhou Xu
    • 1
  • Brian Rodrigues
    • 2
  1. 1.Faculty of BusinessThe Hong Kong Polytechnic University 
  2. 2.Lee Kong Chian School of BusinessSingapore Management University 

Personalised recommendations