Conflict-Free Coloring Made Stronger

  • Elad Horev
  • Roi Krakovski
  • Shakhar Smorodinsky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6139)


In FOCS 2002, Even et al. showed that any set of n discs in the plane can be Conflict-Free colored with a total of at most O(logn) colors. That is, it can be colored with O(logn) colors such that for any (covered) point p there is some disc whose color is distinct from all other colors of discs containing p. They also showed that this bound is asymptotically tight. In this paper we prove the following stronger results:

(i) Any set of n discs in the plane can be colored with a total of at most O(k logn) colors such that (a) for any point p that is covered by at least k discs, there are at least k distinct discs each of which is colored by a color distinct from all other discs containing p and (b) for any point p covered by at most k discs, all discs covering p are colored distinctively. We call such a coloring a k-Strong Conflict-Free coloring. We extend this result to pseudo-discs and arbitrary regions with linear union-complexity.

(ii) More generally, for families of n simple closed Jordan regions with union-complexity bounded by O(n 1 + α ), we prove that there exists a k-Strong Conflict-Free coloring with at most O(k n α ) colors.

(iii) We prove that any set of n axis-parallel rectangles can be k-Strong Conflict-Free colored with at most O(k log2 n) colors.

(iv) We provide a general framework for k-Strong Conflict-Free coloring arbitrary hypergraphs. This framework relates the notion of k-Strong Conflict-Free coloring and the recently studied notion of k-colorful coloring.

All of our proofs are constructive. That is, there exist polynomial time algorithms for computing such colorings.


Conflict-Free Colorings Geometric hypergraphs Wireless networks Discrete geometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abam, M.A., de Berg, M., Poon, S.-H.: Fault-tolerant conflict-free coloring. In: Proceedings of the 20th Annual Canadian Conference on Computational Geometry, Montreal, Canada, August 13-15 (2008)Google Scholar
  2. 2.
    Abellanas, M., Bose, P., Garcia, J., Hurtado, F., Nicolas, M., Ramos, P.A.: On properties of higher order delaunay graphs with applications. In: EWCG (2005)Google Scholar
  3. 3.
    Ajwani, D., Elbassioni, K., Govindarajan, S., Ray, S.: Conflict-free coloring for rectangle ranges using \(\tilde{O}(n^{.382 + \epsilon})\) colors. In: SPAA ’07: Proc. 19th ACM Symp. on Parallelism in Algorithms and Architectures, pp. 181–187 (2007)Google Scholar
  4. 4.
    Alon, N., Smorodinsky, S.: Conflict-free colorings of shallow discs. In: SoCG ’06: Proc. 22nd Annual ACM Symposium on Computational Geometry, pp. 41–43 (2006)Google Scholar
  5. 5.
    Aloupis, G., Cardinal, J., Collette, S., Langerman, S., Smorodinsky, S.: Coloring geometric range spaces. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 146–157. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Bar-Noy, A., Cheilaris, P., Olonetsky, S., Smorodinsky, S.: Online conflict-free colorings for hypergraphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 219–230. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Bar-Noy, A., Cheilaris, P., Olonetsky, S., Smorodinsky, S.: Weakening the online adversary just enough to get optimal conflict-free colorings for intervals. In: SPAA, pp. 194–195 (2007)Google Scholar
  8. 8.
    Bar-Noy, A., Cheilaris, P., Smorodinsky, S.: Conflict-free coloring for intervals: from offline to online. In: SPAA ’06: Proceedings of The Eighteenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, pp. 128–137. ACM Press, New York (2006)CrossRefGoogle Scholar
  9. 9.
    Berge, C.: Graphs and Hypergraphs. Elsevier Science Ltd., Amsterdam (1985)Google Scholar
  10. 10.
    Buchsbaum, A.L., Efrat, A., Jain, S., Venkatasubramanian, S., Yi, K.: Restricted strip covering and the sensor cover problem. In: SODA, pp. 1056–1063 (2007)Google Scholar
  11. 11.
    Chen, K., Fiat, A., Levy, M., Matoušek, J., Mossel, E., Pach, J., Sharir, M., Smorodinsky, S., Wagner, U., Welzl, E.: Online conflict-free coloring for intervals. SIAM J. Comput. 36, 545–554 (2006); See also in Proc. 16th Annual ACM-SIAM Symposium on Discrete Algorithms (2005) CrossRefGoogle Scholar
  12. 12.
    Chen, K., Kaplan, H., Sharir, M.: Online conflict-free coloring for halfplanes, congruent disks, and axis-parallel rectangles (manuscript, 2005)Google Scholar
  13. 13.
    Chen, X., Pach, J., Szegedy, M., Tardos, G.: Delaunay graphs of point sets in the plane with respect to axis-parallel rectangles. In: SODA, pp. 94–101 (2008)Google Scholar
  14. 14.
    Efrat, A.: The complexity of the union of (α,β)-covered objects. In: Proc. 15th Annu. ACM Sympos. Comput. Geom., pp. 134–142 (1999)Google Scholar
  15. 15.
    Efrat, A., Sharir, M.: On the complexity of the union of fat convex objects in the plane. Discrete and Comput. Geom. 23, 171–189 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Elbassioni, K., Mustafa, N.: Conflict-free colorings of rectangles ranges. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 254–263. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Even, G., Lotker, Z., Ron, D., Smorodinsky, S.: Conflict-free colorings of simple geometric regions with applications to frequency assignment in cellular networks. SIAM J. Comput. 33, 94–136 (2003); See also in Proc. 43rd Annual Symposium on Foundations of Computer Science (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Gupta, H.: Personal Communication (2006)Google Scholar
  19. 19.
    Har-Peled, S., Smorodinsky, S.: On conflict-free coloring of points and simple regions in the plane. Discrete and Comput. Geom., 47–70 (2005); See also in 19th Annual Symposium on Computational Geometry (2003)Google Scholar
  20. 20.
    Katz, M., Lev-Tov, N., Morgenstern, G.: Conflict-free coloring of points on a line with respect to a set of intervals. In: CCCG ’07: Proc. 19th Canadian Conference on Computational Geometry (2007)Google Scholar
  21. 21.
    Kedem, K., Livne, R., Pach, J., Sharir, M.: On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles. Discrete Comput. Geom. 1, 59–71 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Pach, J., Tardos, G.: Coloring axis-parallel rectangles. J. Combin. Theory Ser. A (2009)Google Scholar
  23. 23.
    Pach, J., Tóth, G.: Conflict free colorings. Discrete and Computational Geometry, The Goodman-Pollack Festschrift, 665–671 (2003)Google Scholar
  24. 24.
    Pach, J., Tóth, G.: Decomposition of multiple coverings into many parts. In: Symposium on Computational Geometry, pp. 133–137 (2007)Google Scholar
  25. 25.
    Sharir, M., Agarwal, P.K.: Davenport–Schinzel Sequences and Their Geometric Applications. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar
  26. 26.
    Smorodinsky, S.: On the chromatic number of some geometric hypergraphs. SIAM Journal on Discrete Mathematics 21, 676–687 (2007); See also in Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithms (2006)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Elad Horev
    • 1
  • Roi Krakovski
    • 1
  • Shakhar Smorodinsky
    • 2
  1. 1.Computer Science departmentBen-Gurion UniversityBeer ShevaIsrael
  2. 2.Mathematics departmentBen-Gurion UniversityBeer ShevaIsrael

Personalised recommendations