Skip to main content

An Iterative Framework for Improving the Accuracy of Intraoperative Intensity-Based 2D/3D Registration for Image-Guided Orthopedic Surgery

  • Conference paper
Information Processing in Computer-Assisted Interventions (IPCAI 2010)

Abstract

We propose an iterative refinement framework that improves the accuracy of intraoperative intensity-based 2D/3D registration. The method optimizes both the extrinsic camera parameters and the object pose. The algorithm estimates the transformation between the fiducials and the patient intraoperatively using a small number of X-ray images. The proposed algorithm was validated in an experiment using a cadaveric phantom, in which the true registration was acquired from CT data. The results of 50 registration trials with randomized initial conditions on a pair of X-ray C-arm images taken at 32( angular separation showed that the iterative refinement process improved the translational error by 0.32 mm and the rotational error by 0.61 degrees when compared to the 2D/3D registration without iteration. This tool has the potential to allow routine use of image guided therapy by computing registration parameters using only two X-ray images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moghari, M.H., Abolmaesumi, P.: Distribution of fiducial registration error in rigid-body point-based registration. IEEE Trans. Med. Imaging 28(11), 1791–1801 (2009)

    Article  Google Scholar 

  2. Gueziec, A., Kazanzides, P., Williamson, B., Taylor, R.H.: Anatomy-based registration of CT-scan and intraoperative X-ray images for guiding a surgical robot. IEEE Trans. Med. Imaging 17(5), 715–728 (1998)

    Article  Google Scholar 

  3. Chen, X., Gilkeson, R.C., Fei, B.: Automatic 3D-to-2D registration for CT and dual-energy digital radiography for calcification detection. Med. Phys. 34(12), 4934–4943 (2007)

    Article  Google Scholar 

  4. Scarvell, J.M., Pickering, M.R., Smith, P.N.: New registration algorithm for determining 3D knee kinematics using CT and single-plane fluoroscopy with improved out-of-plane translation accuracy. J. Orthop. Res. (October 1, 2009)

    Google Scholar 

  5. Livyatan, H., Yaniv, Z., Joskowicz, L.: Gradient-based 2-D/3-D rigid registration of fluoroscopic X-ray to CT. IEEE Trans. Med. Imaging 22(11), 1395–1406 (2003)

    Article  Google Scholar 

  6. Jain, A., Fichtinger, G.: C-arm tracking and reconstruction without an external tracker. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006, Part I. LNCS, vol. 4190, pp. 494–502. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Sadowsky, O.: Image registration and hybrid volume reconstruction of bone anatomy using a statistical shape atlas [dissertation]. The Johns Hopkins University (2008)

    Google Scholar 

  8. Wells III, W.M., Viola, P., Atsumi, H., Nakajima, S., Kikinis, R.: Multi-modal volume registration by maximization of mutual information. Med. Image Anal. 1(1), 35–51 (1996)

    Article  Google Scholar 

  9. Nelder, J.A., Mead, R.: A simplex method for function minimization. The Computer Journal 7(4), 308–313 (1965)

    MATH  Google Scholar 

  10. Sadowsky, O., Cohen, J.D., Taylor, R.H.: Projected tetrahedra revisited: A barycentric formulation applied to digital radiograph reconstruction using higher-order attenuation functions. IEEE Trans. Vis. Comput. Graph. 12(4), 461–473 (2006)

    Article  Google Scholar 

  11. Sadowsky, O., Chintalapani, G., Taylor, R.H.: Deformable 2D-3D registration of the pelvis with a limited field of view, using shape statistics. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 519–526. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Pluim, J.P., Maintz, J.B., Viergever, M.A.: Image registration by maximization of combined mutual information and gradient information. IEEE Trans. Med. Imaging 19(8), 809–814 (2000)

    Article  Google Scholar 

  13. Horn, B.K.P.: Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. A. 4(4), 629–642 (1987)

    Article  MathSciNet  Google Scholar 

  14. Gramkow, C.: On averaging rotations. International Journal of Computer Vision 42(1), 7–16 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Otake, Y., Armand, M., Sadowsky, O., Armiger, R.S., Kazanzides, P., Taylor, R.H. (2010). An Iterative Framework for Improving the Accuracy of Intraoperative Intensity-Based 2D/3D Registration for Image-Guided Orthopedic Surgery. In: Navab, N., Jannin, P. (eds) Information Processing in Computer-Assisted Interventions. IPCAI 2010. Lecture Notes in Computer Science, vol 6135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13711-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13711-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13710-5

  • Online ISBN: 978-3-642-13711-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics