Skip to main content

Ultrasound Servoing of Catheters for Beating Heart Valve Repair

  • Conference paper
Information Processing in Computer-Assisted Interventions (IPCAI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6135))

Abstract

Robotic cardiac catheters have the potential to revolutionize heart surgery by extending minimally invasive techniques to complex surgical repairs inside the heart. However, catheter technologies are currently unable to track fast tissue motion, which is required to perform delicate procedures inside a beating heart. This paper presents an actuated catheter tool that compensates for the motion of heart structures like the mitral valve apparatus by servoing a catheter guidewire inside a flexible sheath. We examine design and operation parameters and establish that friction and backlash limit the tracking performance of the catheter system. Based on the results of these experiments, we implement compensation methods to improve trajectory tracking. The catheter system is then integrated with an ultrasound-based visual servoing system to enable fast tissue tracking. In vivo tests show RMS tracking errors of 0.77 mm for following the porcine mitral valve annulus trajectory. The results demonstrate that an ultrasound-guided robotic catheter system can accurately track the fast motion of the mitral valve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baim, D.S.: Grossman’s Cardiac Catheterization, Angiography, and Intervention, p. 992. Lippincott Williams & Wilkins (2005)

    Google Scholar 

  2. Fukuda, T., et al.: Micro active catheter system with multi degrees of freedom. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 2290–2295 (1994)

    Google Scholar 

  3. Jayender, J., Patel, R.V., Nikumb, S.: Robot-assisted catheter insertion using hybrid impedance control. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 607–612 (2006)

    Google Scholar 

  4. Camarillo, D.B., Milne, C.F., Carlson, C.R., Zinn, M.R., Salisbury, J.K.: Mechanics Modeling of Tendon-Driven Continuum Manipulators. IEEE Trans. Robotics 24, 1262–1273 (2008)

    Article  Google Scholar 

  5. Yuen, S.G., Kesner, S.B., Vasilyev, N.V., del Nido, P.J., Howe, R.D.: 3D ultrasound-guided motion compensation system for beating heart mitral valve repair. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 711–719. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Bebek, O., Cavusoglu, M.: Intelligent control algorithms for robotic assisted beating heart surgery. IEEE Trans. Robotics 23, 468–480 (2007)

    Article  Google Scholar 

  7. Ginhoux, R., et al.: Active filtering of physiological motion in robotized surgery using predictive control. IEEE Trans. Robotics 21, 67–79 (2005)

    Article  Google Scholar 

  8. Nakamura, Y., Kishi, K., Kawakami, H.: Heartbeat synchronization for robotic cardiac surgery. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 2014–2019 (2001)

    Google Scholar 

  9. Yuen, S.G., Novotny, P.M., Howe, R.D.: Quasiperiodic predictive filtering for robot-assisted beating heart surgery. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 3875–3880 (2008)

    Google Scholar 

  10. Novotny, P.M., et al.: GPU based real-time instrument tracking with three-dimensional ultrasound. Medical Image Analysis, 458–464 (2007)

    Google Scholar 

  11. Yuen, S.G., et al.: Robotic, Robotic Motion Compensation for Beating Heart Intracardiac Surgery. Int. J. Robotics Research 28(10), 1355–1372 (2009)

    Article  Google Scholar 

  12. Newman, M.F., et al.: Longitudinal Assessment of Neurocognitive Function after Coronary-Artery Bypass Surgery. New England J. Med. 344(6), 395–402 (2001)

    Article  Google Scholar 

  13. Kaneko, M., Yamashita, T., Tanie, K.: Basic considerations on transmission characteristics for tendon drive robots. In: Proc. Int. Conf. on Advanced Robotics, pp. 827–832 (1991)

    Google Scholar 

  14. Nahvi, A., Hollerbach, J.M., Xu, Y., Hunter, I.W.: An investigation of the transmission system of a tendon driven robot hand. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 202–208 (1994)

    Google Scholar 

  15. Palli, G., Melchiorri, C.: Model and control of tendon-sheath transmission systems. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 988–993 (2006)

    Google Scholar 

  16. Nordin, M., Gutman, P.: Controlling mechanical systems with backlash - a survey. Automatica 38, 1633–1649 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Bassett, E.K., Slocum, A.H., Maslakos, P.T., Pryor, H.I., Farokhzad, O.C., Karp, J.M.: Design of a mechanical clutch-based needle-insertion device. PNAS 106, 5540–5545 (2009)

    Article  Google Scholar 

  18. Armstrong-Helouvry, B., Dupont, P.E., Canudas De Wit, C.: A survey of analysis tools and compensation methods for control of machines with friction. Automatica 30, 1083–1138 (1994)

    Article  MATH  Google Scholar 

  19. Recker, D.A., Kokotovic, P.V., Rhode, D., Winkelman, J.: Adaptive nonlinear control of systems containing a deadzone. In: Proc. IEEE Conf. on Decision and Control, pp. 2111–2115 (1991)

    Google Scholar 

  20. Horowitz, R.: Learning Control of Robot Manipulators. Trans. of ASME 115, 402–411 (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kesner, S.B., Yuen, S.G., Howe, R.D. (2010). Ultrasound Servoing of Catheters for Beating Heart Valve Repair. In: Navab, N., Jannin, P. (eds) Information Processing in Computer-Assisted Interventions. IPCAI 2010. Lecture Notes in Computer Science, vol 6135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13711-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13711-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13710-5

  • Online ISBN: 978-3-642-13711-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics