Advertisement

Okamoto-Tanaka Revisited: Fully Authenticated Diffie-Hellman with Minimal Overhead

  • Rosario Gennaro
  • Hugo Krawczyk
  • Tal Rabin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6123)

Abstract

This paper investigates the question of whether a key agreement protocol with the same communication complexity as the original Diffie-Hellman protocol (DHP) (two messages with a single group element per message), and similar low computational overhead, can achieve forward secrecy against active attackers in a provable way. We answer this question in the affirmative by resorting to an old and elegant key agreement protocol: the Okamoto-Tanaka protocol [22]. We analyze a variant of the protocol (denoted mOT ) which achieves the above goal. Moreover, due to the identity-based properties of mOT , even the sending of certificates (typical for authenticated DHPs) can be avoided in the protocol.

As additional contributions, we apply our analysis to prove the security of a recent multi-domain extension of the Okamoto-Tanaka protocol by Schridde et al. and show how to adapt mOT to the (non id-based) certificate-based setting.

Keywords

Hash Function Random Oracle Quadratic Residue Honest Party Perfect Forward Secrecy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 273–289. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Blom, R.: An optimal class of symmetric key generation systems. In: Beth, T., Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 335–338. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  3. 3.
    Boyd, C., Choo, K.-K.R.: Security of two-party identity-based key agreement. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 229–243. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Boyd, C., Mao, W., Paterson, K.G.: Key Agreement Using Statically Keyed Authenticators. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 248–262. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use for Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Chen, L., Cheng, Z., Smart, N.P.: Identity-based key agreement protocols from pairings. Int. J. Inf. Sec. 6(4), 213–241 (2007)CrossRefGoogle Scholar
  7. 7.
    Chen, L., Kudla, C.: Identity Based Authenticated Key Agreement Protocols from Pairings. In: 16th IEEE Computer Security Foundations Workshop - CSFW 2003, pp. 219–233. IEEE Computer Society Press, Los Alamitos (2003)CrossRefGoogle Scholar
  8. 8.
    Damgård, I.: Towards Practical Public Key Systems Secure Against Chosen Ciphertext Attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456. Springer, Heidelberg (1992)Google Scholar
  9. 9.
    De Santis, A., Desmedt, Y., Frankel, Y., Yung, M.: How to share a function securely. In: STOC ’94, pp. 522–533. ACM Press, New York (1994)CrossRefGoogle Scholar
  10. 10.
    Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Trans. Info. Theor. 22(6), 644–654 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Goldreich, O., Rosen, V.: On the security of modular exponentiation with application to the construction of pseudorandom generators. Journal of Cryptology 16(2), 71–93 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gunther, C.G.: An Identity-Based Key-Exchange Protocol. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 29–37. Springer, Heidelberg (1990)Google Scholar
  13. 13.
    Hada, S., Tanaka, T.: On the Existence of 3-round Zero-Knowledge Protocols. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, p. 408. Springer, Heidelberg (1998)Google Scholar
  14. 14.
    Hastad, J., Schrift, A., Shamir, A.: The Discrete Logarithm Modulo a Composite Hides O(n) Bits. J. Comput. Syst. Sci. 47(3), 376–404 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Jarecki, S., Kim, J., Tsudik, G.: Beyond Secret Handshakes: Affiliation-Hiding Authenticated Key Exchange. In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 352–369. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Krawczyk, H.: SKEME: A Versatile Secure Key Exchange Mechanism for Internet. In: 1996 Internet Society Symposium on Network and Distributed System Security, NDSS (1996)Google Scholar
  17. 17.
    Krawczyk, H.: HMQV: A High-Performance Secure Diffie-Hellman Protocol. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg (2005)Google Scholar
  18. 18.
    Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An efficient Protocol for Authenticated Key Agreement. Designs, Codes and Cryptography 28, 119–134 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    McCullagh, N., Barreto, P.S.L.M.: A New Two-Party Identity-Based Authenticated Key Agreement. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 262–274. Springer, Heidelberg (2005)Google Scholar
  20. 20.
    Menezes, A., Van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)Google Scholar
  21. 21.
    Okamoto, E.: Key Distribution Systems Based on Identification Information. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 194–202. Springer, Heidelberg (1988)Google Scholar
  22. 22.
    Okamoto, E., Tanaka, K.: Key Distribution System Based on Identification Information. IEEE Journal on Selected Areas in Communications 7(4), 481–485 (1989)CrossRefGoogle Scholar
  23. 23.
    Shamir, A.: On the Generation of Cryptographically Strong Pseudorandom Sequences. ACM Trans. Comput. Syst. 1(1), 38–44 (1983)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  25. 25.
    Schridde, C., Smith, M., Freisleben, B.: An Identity-Based Key Agreement Protocol for the Network Layer. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 409–422. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Shmuely, Z.: Composite Diffie-Hellman Public-Key Generating Systems are Hard to Break, Technical Report 356, CS Dept., Technion, Israel (1985)Google Scholar
  27. 27.
    Shoup, V.: On formal models for secure key exchange (version 4) (November 15, 1999), http://www.shoup.net/papers/
  28. 28.
    Smetters, D.K., Durfee, G.: Domain-based Administration of Identity-Based Cryptosystems for Secure E-Mail and IPSEC. In: SSYM 2003: Proceedings of the 12th Conference on USENIX Security Symposium, Berkeley, CA, USA, p. 15. USENIX Association (2003)Google Scholar
  29. 29.
    Wang, Y.: Efficient Identity-Based and Authenticated Key Agreement Protocol. Cryptology ePrint Archive, Report 2005/108 (2005), http://eprint.iacr.org/2005/108/

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Rosario Gennaro
    • 1
  • Hugo Krawczyk
    • 1
  • Tal Rabin
    • 1
  1. 1.IBM T.J. Watson Research CenterNew York

Personalised recommendations