Skip to main content

Comparative Testing of Face Detection Algorithms

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 6134)

Abstract

Face detection (FD) is widely used in interactive user interfaces, in advertising industry, entertainment services, video coding, is necessary first stage for all face recognition systems, etc. However, the last practical and independent comparisons of FD algorithms were made by Hjelmas et al. and by Yang et al. in 2001. The aim of this work is to propose parameters of FD algorithms quality evaluation and methodology of their objective comparison, and to show the current state of the art in face detection. The main idea is routine test of the FD algorithm in the labeled image datasets. Faces are represented by coordinates of the centers of the eyes in these datasets. For algorithms, representing detected faces by rectangles, the statistical model of eyes’ coordinates estimation was proposed. In this work the seven face detection algorithms were tested; article contains the results of their comparison.

Keywords

  • face detection
  • face localization accuracy
  • comparative test
  • face datasets

This work is supported by Russian Foundation for Basic Research (Gr. 09-07-00394).

References

  1. Ahonen, T., Hadid, A., Pietikainen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)

    Google Scholar 

  2. Faloutsos, C., Lin, K.I.: FastMap: A fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets. In: Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data, pp. 163–174 (1995)

    Google Scholar 

  3. Fawcett, T.: An introduction to ROC analysis. Pattern Recognition Letters 27(8), 861–874 (2006)

    CrossRef  MathSciNet  Google Scholar 

  4. Hjelmas, E., Low, B.K.: Face Detection: A Survey. Computer Vision and Image Understanding 83(3), 236–274 (2001)

    MATH  CrossRef  Google Scholar 

  5. Jesorsky, O., Kirchberg, K.J., Frischholz, R.W.: Robust face detection using the hausdorff distance. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 90–95. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  6. Jones, M.J.: Face Recognition: Where We Are and Where To Go From Here. IEEJ. Trans. on Elect., Information and Systems 129(5), 770–777 (2009)

    CrossRef  Google Scholar 

  7. Kienzle, W., Bakir, G., Franz, M., Scholkopf, B.: Face detection – efficient and rank deficient. Advan. in neural inform. process. systems 17, 673–680 (2005)

    Google Scholar 

  8. Krestinin, I.A., Seredin, O.S.: Excluding cascading classifier for face detection. In: Proc. of the 19th Int. Conf. on Computer Graphics and Vision, pp. 380–381 (2009)

    Google Scholar 

  9. Lienhart, R., Maydt, J.: An extended set of Haar-like features for rapid object detection. In: Proc. Intern. Conf. on Image Processing 2002, pp. 900–903 (2002)

    Google Scholar 

  10. Marcel, S., Keomany, J., et al.: Robust-to-illumination face localisation using Active Shape Models and Local Binary Patterns. In: IDIAP-RR, vol. 47 (2006)

    Google Scholar 

  11. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)

    CrossRef  Google Scholar 

  12. Papageorgiou, C.P., Oren, M., Poggio, T.: A general framework for object detection. In: Proc. of ICCV, pp. 555–562 (1998)

    Google Scholar 

  13. Sauquet, T., Rodriguez, Y., Marcel, S.: Multiview face detection. In: IDIAP-RR (2005)

    Google Scholar 

  14. Viola, P., Jones, M.: Rapid Object Detection using a Boosted Cascade of Simple. In: Proc. IEEE CVPR 2001 (2001)

    Google Scholar 

  15. Viola, P., Jones, M.J.: Robust Real-Time Face Detection. International Journal of Computer Vision 57(2), 137–154 (2004)

    CrossRef  Google Scholar 

  16. Wechsler, H.: Reliable face recognition methods: system design, implementation and evaluation, p. 329. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  17. Yang, M.H., Kriegman, D.J., Ahuja, N.: Detecting faces in images: A survey. IEEE Transactions on Pattern analysis and Machine intel. 24(1), 34–58 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Degtyarev, N., Seredin, O. (2010). Comparative Testing of Face Detection Algorithms. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D., Meunier, J. (eds) Image and Signal Processing. ICISP 2010. Lecture Notes in Computer Science, vol 6134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13681-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13681-8_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13680-1

  • Online ISBN: 978-3-642-13681-8

  • eBook Packages: Computer ScienceComputer Science (R0)