Measurement-Based and Universal Blind Quantum Computation

  • Anne Broadbent
  • Joseph Fitzsimons
  • Elham Kashefi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6154)


Measurement-based quantum computation (MBQC) is a novel approach to quantum computation where the notion of measurement is the main driving force of computation. This is in contrast with the more traditional circuit model which is based on unitary operation. We review here the mathematical model underlying MBQC and the first quantum cryptographic protocol designed using the unique features of MBQC.


Graph State Denotational Semantic Pauli Operator Interactive Proof Command Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AB09]
    Anders, J., Browne, D.E.: Computational power of correlations. Physical Review Letters 102, 050502 (4 pages) (2009)Google Scholar
  2. [ABE10]
    Aharonov, D., Ben-Or, M., Eban, E.: Interactive proofs for quantum computations. In: Proceedings of Innovations in Computer Science (ICS 2010), pp. 453–469 (2010)Google Scholar
  3. [AFK89]
    Abadi, M., Feigenbaum, J., Kilian, J.: On hiding information from an oracle. Journal of Computer and System Sciences 39, 21–50 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  4. [AJL06]
    Aharonov, D., Jones, V., Landau, Z.: A polynomial quantum algorithm for approximating the Jones polynomial. In: Proceedings of the 38th annual ACM symposium on Theory of computing (STOC 2006), pp. 427–436 (2006)Google Scholar
  5. [AL06]
    Aliferis, P., Leung, D.W.: Simple proof of fault tolerance in the graph-state model. Phys. Rev. A 73 (2006)Google Scholar
  6. [AMTW00]
    Ambainis, A., Mosca, M., Tapp, A., de Wolf, R.: Private quantum channels. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science (FOCS 2000), pp. 547–553 (2000)Google Scholar
  7. [AS06]
    Arrighi, P., Salvail, L.: Blind quantum computation. International Journal of Quantum Information 4, 883–898 (2006)CrossRefzbMATHGoogle Scholar
  8. [Bar84]
    Barendregt, H.P.: The Lambda Calculus, Its Syntax and Semantics. In: Studies in Logic. North-Holland, Amsterdam (1984)Google Scholar
  9. [BB84]
    Brassard, G., Bennett, C.H.: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (1984)Google Scholar
  10. [BB06]
    Browne, D.E., Briegel, H.J.: One-way quantum computation. In: Lectures on Quantum Information, pp. 359–380. Wiley-VCH, Berlin (2006)CrossRefGoogle Scholar
  11. [BCG+02]
    Barnum, H., Crépeau, C., Gottesman, D., Smith, A., Tapp, A.: Authentication of quantum messages. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2002), p. 449 (2002)Google Scholar
  12. [BFK09]
    Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation. In: Proceedings of the 50th Annual Symposium on Foundations of Computer Science (FOCS 2009), pp. 517–527 (2009)Google Scholar
  13. [BK09]
    Broadbent, A., Kashefi, E.: Parallelizing quantum circuits. In: Theoretical Computer Science, pp. 2489–2510 (2009)Google Scholar
  14. [BKMP07]
    Browne, D., Kashefi, E., Mhalla, M., Perdrix, S.: Generalized flow and determinism in measurement-based quantum computation. New Journal of Physics 9 (2007)Google Scholar
  15. [BR03]
    Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum bits. Physical Review A 67, 042317 (2003)CrossRefGoogle Scholar
  16. [BV97]
    Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM Journal of Computing 5(26) (1997)Google Scholar
  17. [Chi05]
    Childs, A.M.: Secure assisted quantum computation. Quantum Information and Computation 5, 456–466 (2005); Initial version appeared online in (2001)MathSciNetzbMATHGoogle Scholar
  18. [Cho75]
    Choi, M.D.: Completely positive linear maps on complex matrices. Linear Algebra and Applications 10 (1975)Google Scholar
  19. [CLN05a]
    Childs, A.M., Leung, D.W., Nielsen, M.A.: Unified derivations of measurement-based schemes for quantum computation. Physical Review A 71 (2005), quant-ph/0404132Google Scholar
  20. [CLN05b]
    Childs, A.M., Leung, D.W., Nielsen, M.A.: Unified derivations of measurement-based schemes for quantum computation. Physical Review A 71, 032318 (14 pages) (2005)Google Scholar
  21. [DAB03]
    Dür, W., Aschauer, H., Briegel, H.J.: Multiparticle entanglement purification for graph state. Physical Review Letters 91 (2003), quant-ph/0303087Google Scholar
  22. [Deu85]
    Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society of London A400 (1985)Google Scholar
  23. [Deu89]
    Deutsch, D.: Quantum computational networks. Proc. Roy. Soc. Lond A 425 (1989)Google Scholar
  24. [DK06]
    Danos, V., Kashefi, E.: Determinism in the one-way model. Physical Review A 74, 052310 (6 pages) (2006)Google Scholar
  25. [DKP05]
    Danos, V., Kashefi, E., Panangaden, P.: Parsimonious and robust realizations of unitary maps in the one-way model. Physical Review A 72 (2005)Google Scholar
  26. [DKP07]
    Danos, V., Kashefi, E., Panangaden, P.: The measurement calculus. Journal of ACM 54, 8 (45 pages) (2007)Google Scholar
  27. [DS96]
    Dürr, C., Santha, M.: A decision procedure for unitary linear quantum cellular automata. In: Proceedings of FOCS 1996 – Symposium on Foundations of Computer Science, LNCS. Springer, Heidelberg (1996), quant-ph/9604007 Google Scholar
  28. [Fei86]
    Feigenbaum, J.: Encrypting problem instances: Or... can you take advantage of someone without having to trust him? In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 477–488. Springer, Heidelberg (1986)Google Scholar
  29. [GC99]
    Gottesman, D., Chuang, I.L.: Quantum teleportation is a universal computational primitive. Nature 402 (1999)Google Scholar
  30. [GKR08]
    Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive proofs for muggles. In: Proceedings of the 40th annual ACM symposium on Theory of computing, pp. 113–122 (2008)Google Scholar
  31. [GOD+06]
    Greentree, A.D., Olivero, P., Draganski, M., Trajkov, E., Rabeau, J.R., Reichart, P., Gibson, B.C., Rubanov, S., Huntington, S.T., Jamieson, D.N., Prawer, S.: Critical components for diamond-based quantum coherent devices. Journal of Physics: Condensed Matter 18, 825–842 (2006)Google Scholar
  32. [Got97]
    Gottesoman, D.: Stabilizer codes and quantum error correction. PhD thesis, California Institute of Technology (1997)Google Scholar
  33. [Got00]
    Gottesman, D.: Fault-tolerant quantum computation with local gates. Journal of Modern Optics 47, 333–345 (2000)MathSciNetCrossRefGoogle Scholar
  34. [HEB04]
    Hein, M., Eisert, J., Briegel, H.J.: Multi-party entanglement in graph states. Physical Review A 69 (2004)Google Scholar
  35. [Kit97]
    Kitaev, A.Y.: Quantum computations: algorithms and error correction. Russian Mathematical Surveys 52, 1191–1249 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  36. [KL00]
    Knill, E., Laflamme, R.: A theory of quantum error-correcting codes. Physical Review Letters 84, 2525 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  37. [MS08]
    Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Physical Review A 78, 042309 (17 pages) (2008)Google Scholar
  38. [NC00]
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  39. [ND05]
    Nielsen, M.A., Dawson, C.M.: Fault-tolerant quantum computation with cluster states. Phys. Rev. A 71 (2005)Google Scholar
  40. [Nie03]
    Nielsen, M.A.: Universal quantum computation using only projective measurement, quantum memory and preparation of the 0 state. Physical Review A 308 (2003)Google Scholar
  41. [Per95]
    Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic Publishers, Dordrecht (1995)zbMATHGoogle Scholar
  42. [Pre98]
    Preskill, J.: Fault-tolerant quantum computation. In: Lo, H.K., Popescu, S., Spiller, T.P. (eds.) Introduction to Quantum Computation and Information. World Scientific, Singapore (1998)Google Scholar
  43. [RB01]
    Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Physical Review Letters 86 (2001)Google Scholar
  44. [RBB03]
    Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation on cluster states. Physical Review A 68 (2003)Google Scholar
  45. [RHG06]
    Raussendorf, R., Harrington, J., Goyal, K.: A fault-tolerant one-way quantum computer. Annals of Physics 321, 2242–2270 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  46. [RSA78]
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21, 120–126 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  47. [Sel04]
    Selinger, P.: Towards a quantum programming language. Mathematical Structures in Computer Science 14(4) (2004)Google Scholar
  48. [Sel05]
    Selinger, P. (ed.): Proceedings of the 3nd International Workshop on Quantum Programming Languages. ENTCS (2005)Google Scholar
  49. [Sho97]
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing 26, 1484–1509 (1997); First published in 1995MathSciNetCrossRefzbMATHGoogle Scholar
  50. [SW04]
    Schumacher, B., Werner, R.F.: Reversible quantum cellular automata (2004), quant-ph/0405174Google Scholar
  51. [Unr05]
    Unruh, D.: Quantum programs with classical output streams. In: Selinger [Sel05] (2005)Google Scholar
  52. [vD96]
    van Dam, W.: Quantum cellular automata. Master’s thesis, Computer Science Nijmegen (1996)Google Scholar
  53. [Wat95]
    Watrous, J.: On one-dimensional quantum cellular automata. In: Proceedings of FOCS 1995 – Symposium on Foundations of Computer Science, LNCS. Springer, Heidelberg (1995)Google Scholar
  54. [ZCC07]
    Zeng, B., Cross, A., Chuang, I.L.: Transversality versus universality for additive quantum codes (2007), arXiv:0706.1382v3 (quant-ph)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Anne Broadbent
    • 1
  • Joseph Fitzsimons
    • 1
    • 2
  • Elham Kashefi
    • 3
  1. 1.Institute for Quantum ComputingUniversity of WaterlooCanada
  2. 2.Materials DepartmentUniversity of OxfordUnited Kingdom
  3. 3.School of InformaticsUniversity of EdinburghUnited Kingdom

Personalised recommendations