Analyzing the Role of Dimension Arrangement for Data Visualization in Radviz

  • Luigi Di Caro
  • Vanessa Frias-Martinez
  • Enrique Frias-Martinez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6119)


The Radial Coordinate Visualization (Radviz) technique has been widely used to effectively evaluate the existence of patterns in highly dimensional data sets. A crucial aspect of this technique lies in the arrangement of the dimensions, which determines the quality of the posterior visualization. Dimension arrangement (DA) has been shown to be an NP-problem and different heuristics have been proposed to solve it using optimization techniques. However, very little work has focused on understanding the relation between the arrangement of the dimensions and the quality of the visualization. In this paper we first present two variations of the DA problem: (1) a Radviz independent approach and (2) a Radviz dependent approach. We then describe the use of the Davies-Bouldin index to automatically evaluate the quality of a visualization i.e., its visual usefulness. Our empirical evaluation is extensive and uses both real and synthetic data sets in order to evaluate our proposed methods and to fully understand the impact that parameters such as number of samples, dimensions, or cluster separability have in the relation between the optimization algorithm and the visualization tool.


Visual Quality Optimization Function Visualization Technique Data Visualization Circle Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ankerst, M., Berchtold, S., Keim, D.A.: Similarity clustering of dimensions for an enhanced visualization of multidimensional data. In: INFOVIS (1998)Google Scholar
  2. 2.
    Ankerst, M., Keim, D.A., Kriegel, H.-P.: Circle segments: A technique for visually exploring large multidimensional data sets. In: Visualization (1996)Google Scholar
  3. 3.
    Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI 1(2), 224–227 (1979)CrossRefGoogle Scholar
  4. 4.
    Hoffman, P., Grinstein, G., Marx, K., Grosse, I., Stanley, E.: Dna visual and analytic data mining. In: VIS (1997)Google Scholar
  5. 5.
    Hoffman, P., Grinstein, G., Pinkney, D.: Dimensional anchors: a graphic primitive for multidimensional multivariate information visualizations. In: NPIVM (1999)Google Scholar
  6. 6.
    Inselberg, A., Dimsdale, B.: Parallel coordinates: a tool for visualizing multi-dimensional geometry. In: VIS, Los Alamitos, CA, USA, pp. 361–378 (1990)Google Scholar
  7. 7.
    Kandogan, E.: Star coordinates: A multi-dimensional visualization technique with uniform treatment of dimensions. In: IEEE Information Visualization Symp. (2000)Google Scholar
  8. 8.
    Kovács, F., Iváncsy, R.: Cluster validity measurement for arbitrary shaped clusters. In: AIKED, Wisconsin, USA (2006)Google Scholar
  9. 9.
    Leban, G., Zupan, B., Vidmar, G., Bratko, I.: Vizrank: Data visualization guided by machine learning. Data Min. Knowl. Discov. 13(2), 119–136 (2006)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Peng, W., Ward, M.O., Rundensteiner, E.A.: Clutter reduction in multi-dimensional data visualization using dimension reordering. InfoVis (2004)Google Scholar
  11. 11.
    Sharko, J., Grinstein, G., Marx, K.A.: Vectorized radviz and its application to multiple cluster datasets. In: Visualization and Computer Graphics. IEEE, Los Alamitos (2008)Google Scholar
  12. 12.
    Yang, J., Peng, W., Ward, M.O., Rundensteiner, E.A.: Interactive hierarchical dimension ordering, spacing and filtering for exploration of high dimensional datasets. In: Proc. IEEE Symposium on Information Visualization (2003)Google Scholar
  13. 13.
    Yang, J., Ward, M.O., Rundensteiner, E.: Visual hierarchical dimension reduction for exploration of high dimensional datasets (2003)Google Scholar
  14. 14.
    Aumann, Y., Feldman, R., Yehuda, Y.B., Landau, D., Liphstat, O., Schler, Y.: Circle graphs: New visualization tools for text-mining. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 277–282. Springer, Heidelberg (1999)Google Scholar
  15. 15.
    Zhu, H.: On information and sufficiency (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Luigi Di Caro
    • 1
  • Vanessa Frias-Martinez
    • 2
  • Enrique Frias-Martinez
    • 2
  1. 1.Department of Computer ScienceUniversita’ di TorinoTorinoItaly
  2. 2.Data Mining and User Modeling Group, Telefonica ResearchMadridSpain

Personalised recommendations