Development of an Ensemble of Digital Breast Object Models

  • J. Michael O’Connor
  • Mini Das
  • Clay Didier
  • Mufeed Mah’d
  • Stephen J. Glick
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6136)


In the investigation of emerging tomographic breast imaging methods using flat-panel detectors (FPDs), digital breast object models are useful tools. These models are also commonly referred to as digital phantoms. We have created an ensemble of digital breast object phantoms based on CT scans of surgical mastectomy specimens. Early versions of the phantoms have been used in our published research. Recently we have improved some of our processing tools such as the use of 3-D anisotropic diffusion filtering (ADF) prior to segmentation, and we have evaluated breast object models generated with different methods including power spectral analysis, ROI statistics and an observation study.


Flat-panel detector (FPD) anisotropic diffusion filter (ADF)  Digital Breast Object Model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Screening for Breast Cancer: U.S. Preventative Services Task Force Recommendation Statement. Ann. Intern. Med. 151(10), 716–726 (2009)Google Scholar
  2. 2.
    Nelson, H.D., et al.: Screening for Breast Cancer: An Update for the U.S. Preventative Services Task Force. Ann. Intern. Med. 151(10), 727–737 (2009)Google Scholar
  3. 3.
    Boone, J., et al.: Dedicated Breast CT: Radiation Dose and Image Quality Evaluation. Radiology 221(3), 657–677 (2001)CrossRefGoogle Scholar
  4. 4.
    Chen, B., Ning, R.: Cone-beam volume CT breast imaging: Feasibility study. Med. Phys. 29(5), 755–770 (2002)CrossRefGoogle Scholar
  5. 5.
    Chen, L., et al.: Cone-beam CT breast imaging with a flat-panel detector: a simulation study. In: Proceedings of SPIE Medical Imaging 2005: Physics of Medical Imaging, vol. 5745 (2005)Google Scholar
  6. 6.
    McKinley, R., et al.: Investigation of cone-beam acquisitions implemented using a novel dedicated mammotomography system with unique arbitrary orbit capability. In: Proceedings of SPIE, Medical Imaging 2005, p. 9 (2005)Google Scholar
  7. 7.
    Tornai, M., et al.: Design and Development of a Fully-3D Dedicated X-ray Computed Mammotomography System. In: Proceedings of SPIE, Medical Imaging 2005, vol. 9 (2005)Google Scholar
  8. 8.
    Yang, W.T., et al.: Dedicated cone-beam breast CT: Feasibility study with surgical mastectomy specimens. Am. J. Roentgenol. 189(6), 1312–1315 (2007)CrossRefGoogle Scholar
  9. 9.
    Barrett, H.H., Myers, K.J.: Foundations of Image Science. John Wiley, Chichester (2003)Google Scholar
  10. 10.
    Hsu, J., et al.: Preclincal ROC Studies of Digital Stereomammography. IEEE Trans. Med. Imag. 14(2), 318–327 (1995)CrossRefGoogle Scholar
  11. 11.
    Taylor, P., Owens, R., Ingram, D.: Simulated mammography using synthetic 3D breasts. In: 4th Int. Workshop on Digital Mammography (IWDM). Kluwer, Nijmegen (1998)Google Scholar
  12. 12.
    Bakic, P.R., et al.: Mammogram synthesis using 3D simulation. 1. Breast tissue model and image acquisition simulation. Med. Phys. 29(9), 2131–2139 (2002)CrossRefGoogle Scholar
  13. 13.
    Bakic, P.R., et al.: Mammogram synthesis using a 3D simulation. II. Evaluation of synthetic mammogram texture. Med. Phys. 29(9), 2140–2151 (2002)CrossRefGoogle Scholar
  14. 14.
    Bakic, P.R., et al.: Mammogram synthesis using a three-dimensional simulation. III. Modeling and evaluation of the breast ductal network. Med. Phys. 30(7), 1915–1926 (2003)CrossRefGoogle Scholar
  15. 15.
    Bliznakova, K., et al.: A three-dimensional breast software phantom for mammography simulation. Phys. Med. Biol. 48, 3699–3719 (2003)CrossRefGoogle Scholar
  16. 16.
    O’Connor, J.M., et al.: Using mastectomy specimens to develop breast models for breast tomosynthesis and CT breast imaging. In: Proceedings of SPIE, Medical Imaging 2008: Physics of Medical Imaging, pp. 691315 (2008)Google Scholar
  17. 17.
    Li, C.M., Segars, W.P.,, L.J.Y.: Three-dimensional computer generated breast phantom based on empirical data. In: Medical Imaging 2008. SPIE, San Diego (2008)Google Scholar
  18. 18.
    Li, C.M., et al.: Computerized 3D breast phantom with enhanced high-resolution detail. In: Medical Imaging 2009. SPIE, Orlando (2009)Google Scholar
  19. 19.
    Li, C.M., et al.: Methodology for generating a 3D computerized breast phantom from empirical data. Med. Phys. 36(7), 3122–3131 (2009)CrossRefGoogle Scholar
  20. 20.
    O’Connor, J.M., et al.: Comparison of Two Methods to Develop Breast Models for Simulation of Breast Tomosynthesis and CT. In: International Workshop on Digital Mammography (IWDM). Springer, Tucson (2008)Google Scholar
  21. 21.
    IRB Docket #H-12422, I.R.B.I. University of Massachusetts, Editor (2006)Google Scholar
  22. 22.
    O’Connor, J.M., et al.: Characterization of a prototype table-top x-ray CT breast imaging system. In: Proceedings of SPIE, Medical Imaging 2007: Physics of Medical Imaging. SPIE, San Diego (2007)Google Scholar
  23. 23.
    Vedula, A.A., Glick, S.J., Gong, X.: Computer simulation of CT mammography using a flat-panel imager. In: Proceedings of SPIE Physics of Medical Imaging 2003, Physics of Medical Imaging, vol. 5030, pp. 349–360 (2003)Google Scholar
  24. 24.
    Feldkamp, L.A., Davis, L.C., Kress, J.W.: Practical cone-beam algorithm. J. Opt. Soc. Am. 1(6), 612–619 (1984)CrossRefGoogle Scholar
  25. 25.
    Altunbas, M.C., et al.: A post-reconstruction method to correct cupping artifacts in cone beam breast computed tomography. Med. Phys. (2007)Google Scholar
  26. 26.
    Perona, P., Malik, J.: Scale-Space and Edge Detection Using Anisotropic Diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7), 11 (1990)CrossRefGoogle Scholar
  27. 27.
    Insight Segmentation and Registration Toolkit (ITK),
  28. 28.
    Metheany, K.G., et al.: Characterizing anatomical variability in breast CT images. Med. Phys. 35(10), 4685–4694 (2008)CrossRefGoogle Scholar
  29. 29.
    Burgess, A.E., Jacobson, F.L., Judy, P.F.: Human observer detection experiments with mammograms and power-law noise. Med. Phys. 28(4), 419–437 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • J. Michael O’Connor
    • 1
    • 2
  • Mini Das
    • 2
  • Clay Didier
    • 1
  • Mufeed Mah’d
    • 1
  • Stephen J. Glick
    • 2
  1. 1.Biomedical Engineering & Biotechnology ProgramUniversity of Massachusetts LowellLowellUSA
  2. 2.Department of RadiologyUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations