Abstract
In this work, we investigate the use of online or “crawling” algorithms to sample large social networks in order to determine the most influential or important individuals within the network (by varying definitions of network centrality). We describe a novel sampling technique based on concepts from expander graphs. We empirically evaluate this method in addition to other online sampling strategies on several real-world social networks. We find that, by sampling nodes to maximize the expansion of the sample, we are able to approximate the set of most influential individuals across multiple measures of centrality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Freeman, L.C.: Centrality in social networks. Social Networks 1, 215–239 (1979)
Wasserman, S., Faust, K., Iacobucci, D.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (November 1994)
Bavelas, A.: Communication patterns in task-oriented groups. J. Acoustical Soc. of Am. 22(6), 725–730 (1950)
Russo, T., Koesten, J.: Prestige, centrality, and learning: A social network analysis of an online class. Communication Education 54(3), 254–261 (2005)
Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Technical report, Stanford InfoLab (1998)
Anthonisse, J.: The rush in a graph. Mathematische Centrum, Amsterdam (1971)
Freeman, L.: A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977)
Bonacich, P.: Power and centrality: A family of measures. American J. Sociology 92(5), 1170–1182 (1987)
Boldi, P., Santini, M., Vigna, S.: Paradoxical effects in pagerank incremental computations. In: Workshop on Web Graphs (2004)
Abiteboul, S., Preda, M., Cobena, G.: Adaptive on-line page importance computation. In: WWW (2003)
Cho, J., Molina, H.G., Page, L.: Efficient crawling through url ordering. Computer Networks and ISDN Systems 30(1-7), 161–172 (1998)
Najork, M.: Breadth-first search crawling yields high-quality pages. In: WWW 2001 (2001)
Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: KDD 2005 (2005)
Krishnamurthy, V., Faloutsos, M., Chrobak, M., Cui, J., Lao, L., Percus, A.: Sampling large internet topologies for simulation purposes. Computer Networks 51(15), 4284–4302 (2007)
Hubler, C., Kriegel, H.P., Borgwardt, K., Ghahramani, Z.: Metropolis algorithms for representative subgraph sampling. In: ICDM 2008 (2008)
Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull. Amer. Math. Soc. 43, 439–561 (2006)
Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: Densification and shrinking diameters. ACM TKDD 1(1), 2 (2007)
Shetty, J., Adibi, J.: Enron email dataset. Technical report (2004)
Richardson, M., Agrawal, R., Domingos, P.: Trust Management for the Semantic Web. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 351–368. Springer, Heidelberg (2003)
Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Statistical properties of community structure in large social and information networks. In: WWW 2008 (2008)
Kendall, M., Gibbons, J.D.: Rank Correlation Methods, 5th edn. (September 1990)
Jaccard, P.: Étude comparative de la distribution florale dans une portion des alpes et des jura. Bulletin del la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Maiya, A.S., Berger-Wolf, T.Y. (2010). Online Sampling of High Centrality Individuals in Social Networks. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2010. Lecture Notes in Computer Science(), vol 6118. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13657-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-13657-3_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13656-6
Online ISBN: 978-3-642-13657-3
eBook Packages: Computer ScienceComputer Science (R0)