As Time Goes by: Discovering Eras in Evolving Social Networks

  • Michele Berlingerio
  • Michele Coscia
  • Fosca Giannotti
  • Anna Monreale
  • Dino Pedreschi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6118)

Abstract

Within the large body of research in complex network analysis, an important topic is the temporal evolution of networks. Existing approaches aim at analyzing the evolution on the global and the local scale, extracting properties of either the entire network or local patterns. In this paper, we focus instead on detecting clusters of temporal snapshots of a network, to be interpreted as eras of evolution. To this aim, we introduce a novel hierarchical clustering methodology, based on a dissimilarity measure (derived from the Jaccard coefficient) between two temporal snapshots of the network. We devise a framework to discover and browse the eras, either in top-down or a bottom-up fashion, supporting the exploration of the evolution at any level of temporal resolution. We show how our approach applies to real networks, by detecting eras in an evolving co-authorship graph extracted from a bibliographic dataset; we illustrate how the discovered temporal clustering highlights the crucial moments when the network had profound changes in its structure. Our approach is finally boosted by introducing a meaningful labeling of the obtained clusters, such as the characterizing topics of each discovered era, thus adding a semantic dimension to our analysis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thirteen ways to look at the correlation coefficient. The American Statistician 42(1), 59–66 (1988)Google Scholar
  2. 2.
    Berkhin, P.: Survey of clustering data mining techniques. Technical report, Accrue Software, San Jose, CA (2002)Google Scholar
  3. 3.
    Berlingerio, M., Bonchi, F., Bringmann, B., Gionis, A.: Mining graph evolution rules. In: ECML/PKDD, vol. (1), pp. 115–130 (2009)Google Scholar
  4. 4.
    Berlingerio, M., Coscia, M., Giannotti, F.: Mining the temporal dimension of the information propagation. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 237–248. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Bordino, I., Boldi, P., Donato, D., Santini, M., Vigna, S.: Temporal evolution of the uk web. In: ICDM Workshops, pp. 909–918 (2008)Google Scholar
  6. 6.
    Brewington, B.E., Cybenko, G.: Keeping up with the changing web. IEEE Computer 33(5) (2000)Google Scholar
  7. 7.
    Chakrabarti, D., Faloutsos, C.: Graph mining: Laws, generators, and algorithms. ACM Comput. Surv. 38(1) (2006)Google Scholar
  8. 8.
    Cho, J., Garcia-Molina, H.: Estimating frequency of change. ACM Trans. Internet Techn. 3(3), 256–290 (2003)CrossRefGoogle Scholar
  9. 9.
    Gomes, D., Silva, M.J.: Modelling information persistence on the web. In: ICWE 2006: Proceedings of the 6th international conference on Web engineering, pp. 193–200 (2006)Google Scholar
  10. 10.
    Kempe, D., Kleinberg, J.M., Kumar, A.: Connectivity and inference problems for temporal networks. In: STOC, pp. 504–513 (2000)Google Scholar
  11. 11.
    Kossinets, G., Kleinberg, J.M., Watts, D.J.: The structure of information pathways in a social communication network. In: KDD, pp. 435–443 (2008)Google Scholar
  12. 12.
    Leskovec, J., Backstrom, L., Kumar, R., Tomkins, A.: Microscopic evolution of social networks. In: KDD, pp. 462–470 (2008)Google Scholar
  13. 13.
    Leskovec, J., Kleinberg, J.M., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: KDD, pp. 177–187 (2005)Google Scholar
  14. 14.
    McGlohon, M., Akoglu, L., Faloutsos, C.: Weighted graphs and disconnected components: patterns and a generator. In: KDD, pp. 524–532 (2008)Google Scholar
  15. 15.
    Robertson, S.E., van Rijsbergen, C.J., Porter, M.F.: Probabilistic models of indexing and searching. In: SIGIR, pp. 35–56 (1980)Google Scholar
  16. 16.
    Zheleva, E., Sharara, H., Getoor, L.: Co-evolution of social and affiliation networks. In: KDD, pp. 1007–1016 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Michele Berlingerio
    • 1
  • Michele Coscia
    • 1
    • 2
  • Fosca Giannotti
    • 1
    • 3
  • Anna Monreale
    • 1
    • 2
  • Dino Pedreschi
    • 2
    • 3
  1. 1.ISTI - CNR, Area della Ricerca di PisaItaly
  2. 2.Computer Science Dep.University of PisaItaly
  3. 3.Center for Complex Networks ResearchNortheastern UniversityBoston

Personalised recommendations