Advertisement

Level Set Method for Reconstruction of Thin Electromagnetic Inclusions

  • Won-Kwang Park
  • Dominique Lesselier
Part of the Springer Proceedings in Physics book series (SPPHY, volume 135)

Abstract

In this paper, we consider the recently developed level set evolution technique in order to reconstruct two-dimensional thin electromagnetic inclusions with dielectric or magnetic contrast with respect to the embedding homogeneous medium. For a successful reconstruction, two level set functions are employed; the first one describes the location and shape, and the other one the connectivity and length. Speeds of evolution of level set functions are calculated via Fréchet derivatives by means of an adjoint technique. Several numerical experiments illustrate how the proposed method behaves.

Keywords

Initial Guess Descent Direction Adjoint Problem Good Initial Guess Successful Reconstruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Àlvarez, D., Dorn, O., Moscoso, M.: Reconstructing thin shapes from boundary electrical measurements with level sets. Int. J. Inf. Syst. Sci 2, 498–511 (2006)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Ammari, H.: An Introduction to Mathematics of Emerging Biomedical Imaging. Mathematics and Applications Series. Mathematics and Applications Series, vol. 62. Springer, Berlin (2009)Google Scholar
  3. 3.
    Ammari, H., Beretta, E., Francini, E.: Reconstruction of thin conductivity imperfections. Applicable Analysis 83, 63–76 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ammari, H., Beretta, E., Francini, E.: Reconstruction of thin conductivity imperfections, II. The case of multiple segments. Applicable Analysis 85, 87–105 (2006)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Dorn, O., Lesselier, D.: Level set methods for inverse scattering. Inverse Problems 22, R67–R131 (2006)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Lee, H., Park, W.K.: Location search algorithm of thin conductivity inclusions via boundary measurements. In: ESAIM: proc., vol. 26, pp. 217–229 (2009)Google Scholar
  7. 7.
    Osher, S., Fedkiw, R.: Level set methods and dynamic implicit surfaces. Springer, New York (2003)zbMATHGoogle Scholar
  8. 8.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Park, W.K.: Inverse scattering from two-dimensional thin inclusions and cracks. Thèse dedoctorat, Ecole Polytechnique (available via ParisTech) (2009), http://paristech.bib.rilk.com/4834
  10. 10.
    Park, W.K., Ammari, H., Lesselier, D.: On the imaging of two-dimensional thin inclusions by a MUSIC-type algorithm from boundary measurements. Electromagnetic Nondestructive Evaluation (XII), Studies in Applied Electromagnetics and Mechanics 32, 297–304 (2009)Google Scholar
  11. 11.
    Park, W.K., Lesselier, D.: MUSIC-type imaging of a thin penetrable inclusion from its multi-static response matrix. Inverse Problems 25, 075002 (2009)Google Scholar
  12. 12.
    Park, W.K., Lesselier, D.: Reconstruction of thin electromagnetic inclusions by a level set method. Inverse Problems 25, 085010 (2009)Google Scholar
  13. 13.
    Ramananjaona, C., Lambert, M., Lesselier, D., Zolésio, J.-P.: Shape reconstruction of buried obstacles by controlled evolution of a level set: from a min-max formulation to numerical experimentation. Inverse Problems 17, 1087–1111 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Santosa, F.: A level set approach for inverse problems involving obstacles. ESAIM Control Optim. Calc. Var. 1, 17–33 (1996)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Won-Kwang Park
    • 1
  • Dominique Lesselier
    • 1
  1. 1.Département de Recherche en Electromagnètisme, Laboratoire des Signaux et SystèmesCNRS-Supélec-Univ. Paris Sud 11Gif-sur-Yvette cedexFrance

Personalised recommendations