Advertisement

Methanogens in the Digestive Tract of Termites

  • Andreas BruneEmail author
Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 19)

Abstract

Methanogenesis in the enlarged hindgut compartments of termites is a product of symbiotic digestion, fueled by hydrogen and reduced one-carbon compounds formed during the fermentative breakdown of plant fiber and humus. Methanogens are not always the predominant hydrogenotrophic microorganisms, especially in wood-feeding termites, but are restricted to particular microhabitats within the gut. The methanogens in lower termites belong to different lineages of Methanobacteriales that either are endosymbionts of flagellate protists or colonize the periphery of the hindgut, a habitat that is not fully anoxic. The oxygen-reducing capacities of the few isolates so far available indicate that they are well adapted to the continuous influx of oxygen across the gut wall. Higher termites, which lack gut flagellates, often have highly compartmented guts with highly dynamic physicochemical conditions, including redox and pH. The differences between the microenvironments are most pronounced in the soil-feeding species, where each compartment houses a characteristic archaeal community, comprising Methanobacteriales, Methanosarcinales, Methanomicrobiales, and a novel, deep-branching lineage of putative methanogens distantly related to the Thermoplasmatales. All clades form distinct phylogenetic clusters unique to the intestinal tract of insects, but with the exception of several Methanobrevibacter species, none of these archaea have been isolated in pure culture. The high methane emissions of termites, together with their enormous biomass in the tropics, make them a significant natural source of this important greenhouse gas.

Keywords

Methane Emission Methanogenic Archaea Termite Species High Termite Lower Termite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I am grateful to Nicolas Faivre for carefully preparing the phylogenetic tree in Fig. 4.

References

  1. Bignell DE, Oskarsson H, Anderson JM (1980) Specialization of the hindgut wall for the attachment of symbiotic microorganisms in a termite Procubitermes aburiensis. Zoomorphology 96:103–112CrossRefGoogle Scholar
  2. Bignell DE, Eggleton P, Nunes L, Thomas KL (1997) Termites as mediators of carbon fluxes in tropical forests: budgets for carbon dioxide and methane emissions. In: Watt AB, Stork NE, Hunter MD (eds) Forests and insects. Chapman and Hall, London, pp 109–134Google Scholar
  3. Boga HI, Brune A (2003) Hydrogen-dependent oxygen reduction by homoacetogenic bacteria isolated from termite guts. Appl Environ Microbiol 69:779–786PubMedCrossRefGoogle Scholar
  4. Brauman A, Kane M, Breznak JA (1992) Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257:1384–1387PubMedCrossRefGoogle Scholar
  5. Brauman A, Dore J, Eggleton P, Bignell D, Breznak JA, Kane MD (2001) Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. FEMS Microbiol Ecol 35:27–36PubMedCrossRefGoogle Scholar
  6. Breznak JA (1975) Symbiotic relationships between termites and their intestinal microbiota. Symp Soc Exp Biol 29:559–580PubMedGoogle Scholar
  7. Breznak JA (1994) Acetogenesis from carbon dioxide in termite guts. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 303–330CrossRefGoogle Scholar
  8. Breznak JA (2000) Ecology of prokaryotic microbes in the guts of wood- and litter-feeding termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbiosis, ecology. Kluwer Academic Publishers, Dordrecht, pp 209–231Google Scholar
  9. Breznak JA, Leadbetter JR (2006) Termite gut spirochetes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes, vol 7, 3rd edn, Proteobacteria: delta and epsilon subclasses. Deeply rooting bacteria. Springer, New York, pp 318–329CrossRefGoogle Scholar
  10. Breznak JA, Switzer JM (1986) Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl Environ Microbiol 52:623–630PubMedGoogle Scholar
  11. Breznak JA, Brill WJ, Mertins JW, Coppel HC (1973) Nitrogen fixation in termites. Nature 244:577–580PubMedCrossRefGoogle Scholar
  12. Breznak JA, Mertins JW, Coppel HC (1974) Nitrogen fixation and methane production in a wood-eating cockroach, Cryptocercus punctulatus Scudder (Orthoptera: Blattidae). Univ Wisc For Res Notes 184:1–2Google Scholar
  13. Brune A (1998) Termite guts: the world's smallest bioreactors. Trends Biotechnol 16:16–21CrossRefGoogle Scholar
  14. Brune A (2006) Symbiotic associations between termites and prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 1, 3rd edn, Symbiotic associations, biotechnology, applied microbiology. Springer, New York, pp 439–474CrossRefGoogle Scholar
  15. Brune A (2009a) Methanogenesis in the digestive tracts of insects. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology, vol 8. Springer, Heidelberg, pp 707–728Google Scholar
  16. Brune A (2009b) Symbionts aiding digestion. In: Cardé RT, Resh VH (eds) Encyclopedia of insects, 2nd edn. Academic, New York, pp 978–983CrossRefGoogle Scholar
  17. Brune A, Friedrich M (2000) Microecology of the termite gut: structure and function on a microscale. Curr Opin Microbiol 3:263–269PubMedCrossRefGoogle Scholar
  18. Brune A, Kühl M (1996) pH profiles of the extremely alkaline hindguts of soil-feeding termites (Isoptera: Termitidae) determined with microelectrodes. J Insect Physiol 42:1121–1127CrossRefGoogle Scholar
  19. Brune A, Ohkuma M (2010) Role of the termite gut microbiota in symbiotic digestion. In: Bignell DE (ed) Biology of termites: a modern synthesis. Springer, HeidelbergGoogle Scholar
  20. Brune A, Stingl U (2005) Prokaryotic symbionts of termite gut flagellates: phylogenetic and metabolic implications of a tripartite symbiosis. In: Overmann J (ed) Molecular basis of symbiosis. Springer, Berlin, pp 39–60Google Scholar
  21. Brune A, Frenzel P, Cypionka H (2000) Life at the oxic–anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev 24:691–710PubMedGoogle Scholar
  22. Collins NM, Wood TG (1984) Termites and atmospheric gas production. Science 224:84–86PubMedCrossRefGoogle Scholar
  23. Cook SF (1932) The respiratory gas exchange in Termopsis nevadensis. Biol Bull 63:246–257CrossRefGoogle Scholar
  24. Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM et al (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK, pp 499–587Google Scholar
  25. Dighe AS, Jangid K, Gonzalez JM, Pidiyar VJ, Patole MS, Ranade DR, Shouche YS (2004) Comparison of 16S rRNA gene sequences of genus Methanobrevibacter. BMC Microbiol 4:20PubMedCrossRefGoogle Scholar
  26. Donovan SE, Purdy KJ, Kane MD, Eggleton P (2004) Comparison of Euryarchaea strains in the guts and food-soil of the soil-feeding termite Cubitermes fungifaber across different soil types. Appl Environ Microbiol 70:3884–3892PubMedCrossRefGoogle Scholar
  27. Ebert A, Brune A (1997) Hydrogen concentration profiles at the oxic-anoxic interface: a microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Appl Environ Microbiol 63:4039–4046PubMedGoogle Scholar
  28. Egert M, Wagner B, Lemke T, Brune A, Friedrich MW (2003) Microbial community structure in midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl Environ Microbiol 69:6659–6668PubMedCrossRefGoogle Scholar
  29. Fenchel T, Finlay BJ (2010) Free-living protozoa with endosymbiotic methanogens. In: Hackstein JHP (ed) (Endo)symbiotic methanogens. Springer, HeidelbergGoogle Scholar
  30. Friedrich MW, Schmitt-Wagner D, Lueders T, Brune A (2001) Axial differences in community structure of Crenarchaeota and Euryarchaeota in the highly compartmentalized gut of the soil-feeding termite Cubitermes orthognathus. Appl Environ Microbiol 67:4880–4890PubMedCrossRefGoogle Scholar
  31. Hackstein JHP, Stumm CK (1994) Methane production in terrestrial arthropods. Proc Natl Acad Sci USA 91:5441–5445PubMedCrossRefGoogle Scholar
  32. Hackstein JHP, van Hoek AHAM, Leunissen JAM, Huynen M (2001) Anaerobic ciliates and their methanogenic endosymbionts. In: Seckbach J (ed) Symbiosis: mechanisms and model systems. Kluwer Academic Publishers, Dordrecht, pp 251–258Google Scholar
  33. Hackstein JHP, van Alen TA, Rosenberg J (2006) Methane production by terrestrial arthropods. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin, pp 155–180CrossRefGoogle Scholar
  34. Hara K, Shinzato N, Seo M, Oshima T, Yamagishi A (2002) Phylogenetic analysis of symbiotic archaea living in the gut of xylophagous cockroaches. Microbes Environ 17:185–190CrossRefGoogle Scholar
  35. Hara K, Shinzato N, Oshima T, Yamagishi A (2004) Endosymbiotic Methanobrevibacter species living in symbiotic protists of the termite Reticulitermes speratus detected by fluorescent in situ hybridization. Microbes Environ 19:120–127CrossRefGoogle Scholar
  36. Hedderich R, Whitman W (2006) Physiology and biochemistry of the methane-producing archaea. In: Dworkin M et al (eds) The prokaryotes, vol 2, 3rd edn. Springer, New York, pp 1050–1079CrossRefGoogle Scholar
  37. Hongoh Y, Ohkuma M (2010) Termite gut flagellates and their methanogenic and eubacterial symbionts. In: Hackstein JHP (ed) (Endo)symbiotic methanogens. Springer, HeidelbergGoogle Scholar
  38. Inoue J, Noda S, Hongoh Y, Ui S, Ohkuma M (2008) Identification of endosymbiotic methanogen and ectosymbiotic spirochetes of gut protists of the termite Coptotermes formosanus. Microbes Environ 23:94–97PubMedCrossRefGoogle Scholar
  39. Ji R, Brune A (2006) Nitrogen mineralization, ammonia accumulation, and emission of gaseous NH3 by soil-feeding termites. Biogeochemistry 78:267–283CrossRefGoogle Scholar
  40. Kappler A, Brune A (2002) Dynamics of redox potential and changes in redox state of iron and humic acids during gut passage in soil-feeding termites (Cubitermes spp.). Soil Biol Biochem 34:221–227CrossRefGoogle Scholar
  41. Lange M, Westermann P, Kiær Ahring B (2005) Archaea in protozoa and metazoa. Appl Microbiol Biotechnol 66:465–474PubMedCrossRefGoogle Scholar
  42. Leadbetter JR, Breznak JA (1996) Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl Environ Microbiol 62:3620–3631PubMedGoogle Scholar
  43. Leadbetter JR, Crosby LD, Breznak JA (1998) Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts. Arch Microbiol 169:287–292PubMedCrossRefGoogle Scholar
  44. Leadbetter JR, Schmidt TM, Graber JR, Breznak JA (1999) Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283:686–689PubMedCrossRefGoogle Scholar
  45. Lee MJ, Schreurs PJ, Messer AC, Zinder SH (1987) Association of methanogenic bacteria with flagellated protozoa from a termite hindgut. Curr Microbiol 15:337–341CrossRefGoogle Scholar
  46. Lemke T, van Alen T, Hackstein JHP, Brune A (2001) Cross-epithelial hydrogen transfer from the midgut compartment drives methanogenesis in the hindgut of cockroaches. Appl Environ Microbiol 67:4657–4661PubMedCrossRefGoogle Scholar
  47. Lemke T, Stingl U, Egert M, Friedrich MW, Brune A (2003) Physicochemical conditions and microbial activities in the highly alkaline gut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl Environ Microbiol 69:6650–6658PubMedCrossRefGoogle Scholar
  48. Lilburn TG, Schmidt TM, Breznak JA (1999) Phylogenetic diversity of termite gut spirochaetes. Environ Microbiol 1:331–345PubMedCrossRefGoogle Scholar
  49. Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125:171–189PubMedCrossRefGoogle Scholar
  50. Messer AC, Lee MJ (1989) Effect of chemical treatments on methane emission by the hindgut microbiota in the termite Zootermopsis angusticollis. Microb Ecol 18:275–284CrossRefGoogle Scholar
  51. Miyata R, Noda N, Tamaki H, Kinjyo K, Aoyagi H, Uchiyama H, Tanaka H (2007) Phylogenetic relationship of symbiotic archaea in the gut of the higher termite Nasutitermes takasagoensis fed with various carbon sources. Microbes Environ 22:157–164CrossRefGoogle Scholar
  52. Odelson DA, Breznak JA (1983) Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Appl Environ Microbiol 45:1602–1613PubMedGoogle Scholar
  53. Odelson DA, Breznak JA (1985) Nutrition and growth characteristics of Trichomitopsis termopsidis, a cellulolytic protozoan from termites. Appl Environ Microbiol 49:614–621PubMedGoogle Scholar
  54. Ohkuma M, Kudo T (1998) Phylogenetic analysis of the symbiotic intestinal microflora of the termite Cryptotermes domesticus. FEMS Microbiol Lett 164:389–395CrossRefGoogle Scholar
  55. Ohkuma M, Noda S, Horikoshi K, Kudo T (1995) Phylogeny of symbiotic methanogens in the gut of the termite Reticulitermes speratus. FEMS Microbiol Lett 134:45–50PubMedCrossRefGoogle Scholar
  56. Ohkuma M, Noda S, Kudo T (1999) Phylogenetic relationships of symbiotic methanogens in diverse termites. FEMS Microbiol Lett 171:147–153PubMedCrossRefGoogle Scholar
  57. Ottesen EA, Hong JW, Quake SR, Leadbetter JR (2006) Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314:1464–1467PubMedCrossRefGoogle Scholar
  58. Pester M, Brune A (2006) Expression profiles of fhs (FTHFS) genes support the hypothesis that spirochaetes dominate reductive acetogenesis in the hindgut of lower termites. Environ Microbiol 8:1261–1270PubMedCrossRefGoogle Scholar
  59. Pester M, Brune A (2007) Hydrogen is the central free intermediate during lignocellulose degradation by termite gut symbionts. ISME J 1:551–565PubMedCrossRefGoogle Scholar
  60. Pester M, Tholen A, Friedrich MW, Brune A (2007) Methane oxidation in termite hindguts: absence of evidence and evidence of absence. Appl Environ Microbiol 73:2024–2028PubMedCrossRefGoogle Scholar
  61. Purdy KJ (2007) The distribution and diversity of euryarchaeota in termite guts. Adv Appl Microbiol 62:63–80PubMedCrossRefGoogle Scholar
  62. Radek R (1994) Monocercomonides termitis n. sp., an oxymonad from the lower termite Kalotermes sinaicus. Arch Protistenkunde 144:373–382CrossRefGoogle Scholar
  63. Radek R (1997) Spirotrichonympha minor n. sp., a new hypermastigote termite flagellate. Eur J Protistol 33:361–374CrossRefGoogle Scholar
  64. Rasmussen RA, Khalil MAK (1983) Global production of methane by termites. Nature 301:700–702CrossRefGoogle Scholar
  65. Salmassi TM, Leadbetter JR (2003) Molecular aspects of CO2-reductive acetogenesis in cultivated spirochetes and the gut community of the termite Zootermopsis angusticollis. Microbiology 149:2529–2537PubMedCrossRefGoogle Scholar
  66. Sanderson MG (1996) Biomass of termites and their emissions of methane and carbon dioxide: a global database. Global Biogeochem Cycles 10:543–557CrossRefGoogle Scholar
  67. Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280PubMedGoogle Scholar
  68. Schmitt-Wagner D, Brune A (1999) Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl Environ Microbiol 65:4490–4496PubMedGoogle Scholar
  69. Shinzato N, Yoshino H, Yara K (1992) Methane production by microbial symbionts in the lower and higher termites of the Ryukyu Archipelago. In: Sato S, Ishida M, Ishikawa H (eds) Endocytobiology V. Tübingen University Press, Tübingen, pp 161–166Google Scholar
  70. Shinzato N, Matsumoto T, Yamaoka I, Oshima T, Yamagishi A (1999) Phylogenetic diversity of symbiotic methanogens living in the hindgut of the lower termite Reticulitermes speratus analyzed by PCR and in situ hybridization. Appl Environ Microbiol 65:837–840PubMedGoogle Scholar
  71. Shinzato N, Matsumoto T, Yamaoka I, Oshima T, Yamagishi A (2001) Methanogenic symbionts and the locality of their host lower termites. Microbes Environ 16:43–47CrossRefGoogle Scholar
  72. Sprenger WW, van Belzen MC, Rosenberg J, Hackstein JHP, Keltjens JT (2000) Methanomicrococcus blatticola gen. nov., sp., nov., a methanol- and methylamine-reducing methanogen from the hindgut of the cockroach Periplaneta americana. Int J Syst Evol Microbiol 50:1989–1999PubMedCrossRefGoogle Scholar
  73. Sprenger WW, Hackstein JHP, Keltjens JT (2005) The energy metabolism of Methanomicrococcus blatticola: physiological and biochemical aspects. Antonie Van Leeuwenhoek 87:289–299PubMedCrossRefGoogle Scholar
  74. Sprenger WW, Hackstein JH, Keltjens JT (2007) The competitive success of Methanomicrococcus blatticola, a dominant methylotrophic methanogen in the cockroach hindgut, is supported by high substrate affinities and favorable thermodynamics. FEMS Microbiol Ecol 60:266–275PubMedCrossRefGoogle Scholar
  75. Sugimoto A, Inoue T, Kirtibutr N, Abe T (1998a) Methane oxidation by termite mounds estimated by the carbon isotopic composition of methane. Global Biogeochem Cycles 12:595–605CrossRefGoogle Scholar
  76. Sugimoto A, Inoue T, Tayasu I, Miller L, Takeichi S, Abe T (1998b) Methane and hydrogen production in a termite-symbiont system. Ecol Res 13:241–257CrossRefGoogle Scholar
  77. Sugimoto A, Bignell DE, MacDonald JA (2000) Global impact of termites on the carbon cycle and atmospheric trace gases. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 409–435Google Scholar
  78. Tholen A, Brune A (1999) Localization and in situ activities of homoacetogenic bacteria in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl Environ Microbiol 65:4497–4505PubMedGoogle Scholar
  79. Tholen A, Brune A (2000) Impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes. Environ Microbiol 2:436–449PubMedCrossRefGoogle Scholar
  80. Tholen A, Schink B, Brune A (1997) The gut microflora of Reticulitermes flavipes, its relation to oxygen, and evidence for oxygen-dependent acetogenesis by the most abundant Enterococcus sp. FEMS Microbiol Ecol 24:137–149CrossRefGoogle Scholar
  81. Tholen A, Pester M, Brune A (2007) Simultaneous methanogenesis and oxygen reduction by Methanobrevibacter cuticularis at low oxygen fluxes. FEMS Microbiol Ecol 62:303–312PubMedCrossRefGoogle Scholar
  82. Tokura M, Ohkuma M, Kudo T (2000) Molecular phylogeny of methanogens associated with flagellated protists in the gut and with the gut epithelium of termites. FEMS Microbiol Ecol 33:233–240PubMedCrossRefGoogle Scholar
  83. van Hoek AHAM, van Alen TA, Sprakel VSI, Leunissen JAM, Brigge T, Vogels GD, Hackstein JHP (2000) Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Mol Biol Evol 17:251–258PubMedCrossRefGoogle Scholar
  84. Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson TH et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565PubMedCrossRefGoogle Scholar
  85. Wheeler GS, Tokoro M, Scheffrahn RH, Su N-Y (1996) Comparative respiration and methane production rates in nearctic termites. J Insect Physiol 42:799–806CrossRefGoogle Scholar
  86. Worm P, Müller N, Plugge CM, Stams AJM, Schink B (2010) Syntrophy in methanogenic degradation. In: Hackstein JHP (ed) (Endo)symbiotic methanogens. Springer, HeidelbergGoogle Scholar
  87. Zimmerman PR, Greenberg JP, Wandiga SO, Crutzen PJ (1982) Termites: A potentially large source of atmospheric methane, carbon dioxide, and molecular hydrogen. Science 218:563–565PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of BiogeochemistryMax Planck Institute for Terrestrial MicrobiologyMarburgGermany

Personalised recommendations