Skip to main content

Importance of Biofilm Formation in Plant Growth Promoting Rhizobacterial Action

Part of the Microbiology Monographs book series (MICROMONO,volume 18)

Abstract

Among the diverse soil microflora, plant growth promoting rhizobacteria (PGPR) mark an important role in enhancing plant growth through a range of beneficial effects. This is often achieved by forming biofilms in the rhizosphere, which has advantages over planktonic mode of bacterial existence. However, the biofilm formation of PGPR has been overlooked in past research. This chapter focuses on new insights and concepts with reference to improved PGPR effects caused by the biofilm formation by PGPR and its impact on overall plant growth promotion, compared with the planktonic lifestyle of PGPR. Beneficial PGPR play a key role in agricultural approaches through quorum sensing in their biofilm mode. The in vitro production of biofilmed PGPR can be used to give increased crop yields through a range of plant growth mechanisms. They can be used as biofertilizers through improved N2 fixation and micro- and macronutrient uptake. Further, higher levels of plant growth with PGPR have been observed due to their production of plant growth regulators and their abilities to act as biocontrol agents, which are carried out by the production of antibiotics and other antimicrobial compounds. The microbial inoculant industry would also benefit greatly by developing biofilmed PGPR with N2 fixing microbes. Biofilmed PGPR can be manipulated to achieve results in novel agricultural endeavors and hence is as an area which needs a deeper probing into its potential.

Keywords

  • Plant Growth Promote Rhizobacteria
  • Paenibacillus Polymyxa
  • Plant Growth Promote Rhizobacteria Strain
  • Anthurium Andraeanum
  • Planktonic Mode

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-13612-2_4
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   179.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-13612-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   229.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

References

  • Assmus B, Hutzler P, Kirchhof G, Amann R, Lawrence JR, Hartmann A (1995) In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled rRNAtargeted oligonucleotide probes and scanning confocal laser microscopy. Appl Environ Microbiol 61:1013–1019

    PubMed  CAS  Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319

    PubMed  CrossRef  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    PubMed  CrossRef  CAS  Google Scholar 

  • Bandara WMMS, Seneviratne G, Kulasooriya SA (2006) Interactions among endophytic bacteria and fungi: effects and potentials. J Biosci 31:645–650

    PubMed  CrossRef  CAS  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    CrossRef  CAS  Google Scholar 

  • Bending GD, Aspray TJ, Whipps JM (2006) Significance of microbial interactions in the mycorrhizosphere. Adv Appl Microbiol 60:97–132

    PubMed  CrossRef  CAS  Google Scholar 

  • Bent E, Chanway CP (1998) The growth-promoting effects of a bacterial endophyte on lodgepole pine are partially inhibited by the presence of other rhizobacteria. Can J Microbiol 44:980–988

    CrossRef  CAS  Google Scholar 

  • Bloemberg GV, Wijfjes AHM, Lamers GEM, Stuurman N, Lugtenberg BJJ (2000) Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: new perspectives for studying microbial communities. Mol Plant Microbe Interact 13:1170–1176

    PubMed  CrossRef  CAS  Google Scholar 

  • Bolwerk A, Lagopodi AL, Wijfjes AH, Lamers GE, Chin AWTF, Lugtenberg BJ, Bloemberg GV (2003) Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant Microbe Interact 16:983–993

    PubMed  CrossRef  CAS  Google Scholar 

  • Brown ME (1974) Seed and root bacterization. Annu Rev Phytopathol 12:181–197

    CrossRef  CAS  Google Scholar 

  • Burdman S, Okon Y, Jurkevitch E (2000) Surface characteristics of Azospirillum brasilense in relation to cell aggregation and attachment to plant roots. Crit Rev Microbiol 26:91–110

    PubMed  CrossRef  CAS  Google Scholar 

  • Case RJ, Labbate M, Kjelleberg S (2008) AHL-driven quorum-sensing circuits: their frequency and function among the Proteobacteria. ISME J 2:345–349

    PubMed  CrossRef  CAS  Google Scholar 

  • Cavaglieri L, Orlando J, Rodriguez MI, Chulze S, Etcheverry M (2005) Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Res J Microbiol 156:748–754

    CrossRef  CAS  Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, Mulders IHM, Dekkers LC, Lugtenberg BJJ (2000) Root colonisation is essential for biocontrol of tomato foot and root rot by the phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391. Mol Plant Microbe Interact 13:1340–1345

    PubMed  CrossRef  CAS  Google Scholar 

  • Costerton JW, Stewart PS (2000) Bacterial biofilms. In: Nataro JP, Blaser MJ, Cunningham-Rundles S (eds) Persistent bacterial infections. American Society of Microbiologists, Washington, pp 423–439

    Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    PubMed  CrossRef  CAS  Google Scholar 

  • Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422

    PubMed  CrossRef  CAS  Google Scholar 

  • Davey ME, O’Toole AG (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    PubMed  CrossRef  CAS  Google Scholar 

  • Davies DG, Chakrabarty AM, Geesey GG (1993) Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa. Appl Environ Microbiol 59:1181–1186

    PubMed  CAS  Google Scholar 

  • de Ruijter NCA, Bisseling T, Emons AMC (1999) Rhizobium nod factors induce an increase in sub-apical fine bundles of actin filaments in Vicia sativa root hairs within minutes. Mol Plant Microbe Interact 12:829–832

    CrossRef  Google Scholar 

  • Dobereiner J (1997) Biological nitrogen fixation in the tropics: social and economic contributions. Soil Biol Biochem 29:771–774

    CrossRef  Google Scholar 

  • Dow JM, Fouhy Y, Lucey J et al (2007) Cyclic di-GMP as an intracellular signal regulating bacterial biofilm formation. In: Kjelleberg S, Givskov M (eds) The biofilm mode of life: mechanisms and adaptations. Horizon Bioscience, Norwich, pp 71–94

    Google Scholar 

  • Esitken A, Ercisli S, Karlidag H, Sahin F (2005) Potential use of plant growth promoting rhizobacteria (PGPR) in organic apricot production. In: Proceedings of the international scientific conference of environmentally friendly fruit growing, Tartu-Estonia, pp 90–97

    Google Scholar 

  • Espinosa-Urgel M, Kolter R, Ramos JL (2002) Root colonization by Pseudomonas putida: love at first sight. Microbiology 148:341–343

    PubMed  CAS  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonized Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153

    PubMed  CrossRef  CAS  Google Scholar 

  • Jayasinghearachchi HS, Seneviratne G (2004a) Can mushrooms fix atmospheric nitrogen? J Biosci 23:293–296

    CrossRef  Google Scholar 

  • Jayasinghearachchi HS, Seneviratne G (2004b) A Bradyrhizobial- Penicillium spp. biofilm with nitrogenase activity improves N2 fixing symbiosis of soybean. Biol Fertil Soils 40:432–434

    CrossRef  CAS  Google Scholar 

  • Jayasinghearachchi HS, Seneviratne G (2006a) Fungal solubilization of rock phosphate is enhanced by forming fungal–rhizobial biofilms. Soil Biol Biochem 38:405–408

    CrossRef  CAS  Google Scholar 

  • Jayasinghearachchi HS, Seneviratne G (2006b) A mushroom-fungus helps improve endophytic colonization of tomato by Pseudomonas fluorescenc through biofilm formation. Res J Microbiol 1:83–89

    CrossRef  Google Scholar 

  • Juhas M, Eberl L, Tümmler B (2005) Quorum sensing: the power of cooperation in the world of Pseudomonas. Environ Microbiol 7:459–471

    PubMed  CrossRef  CAS  Google Scholar 

  • Kremer RJ, Souissi T (2001) Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Curr Microbiol 43:182–186

    PubMed  CrossRef  CAS  Google Scholar 

  • Lappin-Scott HM, Costerton JW (1995) Microbial biofilms. Cambridge University Press, Cambridge, p 324

    CrossRef  Google Scholar 

  • Leifert C, Li H, Chidburee S, Hampson S, Workman S, Sigee D, Epton HAS, Harbour A (1995) Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. J Appl Bacteriol 78:97–108

    PubMed  CrossRef  CAS  Google Scholar 

  • Loh J, Pierson EA, Pierson LS III, Stacey G, Chatterjee A (2002) Quorum sensing in plant-associated bacteria. Curr Opin Plant Biol 5:285–290

    PubMed  CrossRef  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    PubMed  CrossRef  CAS  Google Scholar 

  • Lugtenberg BJJ, Kravchenko LV, Simons M (1999) Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ Microbiol 1:439–446

    PubMed  CrossRef  CAS  Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    PubMed  CrossRef  CAS  Google Scholar 

  • Matz C, Bergfeld T, Rice SA et al (2004) Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing. Environ Microbiol 6:218–226

    PubMed  CrossRef  Google Scholar 

  • Mazzola M, Cook RJ, Thomashow LS, Weller DM, Pierson LS (1992) Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl Environ Microbiol 58:2616–2624

    PubMed  CAS  Google Scholar 

  • Mendez-Castro FA, Alexander M (1983) Method for establishing a bacterial inoculum on corn roots. Appl Environ Microbiol 45:248–254

    PubMed  CAS  Google Scholar 

  • Molina MA, Ramos JL, Espinosa-Urgel M (2003) Plant-associated biofilms. Rev Environ Sci Biotechnol 2:99–108

    CrossRef  Google Scholar 

  • Morris CE, Monier JM (2003) The ecological significance of biofilm formation by plant-associated bacteria. Annu Rev Phytopathol 41:455–482

    CrossRef  Google Scholar 

  • O’Connell PF (1992) Sustainable agriculture – a valid alternative. Outlook Agric 21:5–12

    Google Scholar 

  • O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304

    PubMed  CrossRef  Google Scholar 

  • Pierson EA, Wood DW, Cannon JA, Blachere FM, Pierson LS III (1998) Interpopulation signaling via N-Acyl-Homoserine lactones among bacteria in the wheat rhizosphere. Mol Plant Microbe Interact 11:1078–1084

    CrossRef  CAS  Google Scholar 

  • Raaijmakers JM, Leeman M, van Oorschot MMP, van der Siuls I, Schippers B, Bakker PAHM (1995) Dose-response relationships of biological control of Fusarium wilt of radish by Pseudomonas spp. Phytopathol 85:1075–1081

    CrossRef  Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Leeuwenhoek 81:537–547

    PubMed  CrossRef  CAS  Google Scholar 

  • Ramey BE, Matthysse AG, Fuqua C (2004) The FNR-type transcriptional regulator SinR controls maturation of Agrobacterium tumefaciens biofilms. Mol Microbiol 52:1495–1511

    PubMed  CrossRef  CAS  Google Scholar 

  • Raupach GS, Kloepper JW (1998) Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathol 88:1158–1164

    CrossRef  CAS  Google Scholar 

  • Reis MY, Olivares FL, Dobereiner J (1994) Improved methodology for isolation of Acetobacter diazatrophicus and confirmation of its endophytic habitat. World J Microbiol Biotechnol 10:101–105

    CrossRef  Google Scholar 

  • Risøen PA, Rønning P, Hegna IK, Kolstø AB (2004) Characterization of a broad range antimicrobial substance from Bacillus cereus. J Appl Microbiol 96:648–655

    PubMed  CrossRef  Google Scholar 

  • Roberts ME, Stewart PS (2005) Modelling protection from antimicrobial agents in biofilms through the formation of persister cells. Microbiology 51:75–80

    CrossRef  Google Scholar 

  • Rovira AD (1969) Plant root exudates. Bot Rev 35:35–57

    CrossRef  CAS  Google Scholar 

  • Rudrappa T, Biedrzycki ML, Bais HP (2008) Causes and consequences of plant-associated biofilms. FEMS Microbiol Ecol 641:53–166

    Google Scholar 

  • Russo DM, Williams A, Edwards A, Posadas DM, Finnie C, Dankert M, Downie JA, Zorreguieta A (2006) Proteins exported via the PrsD-PrsE type I secretion system and the acidic exopolysaccharide are involved in biofilm formation by Rhizobium leguminosarum. J Bacteriol 188:4474–4486

    PubMed  CrossRef  CAS  Google Scholar 

  • Saleh-Lakha S, Glick BR (2006) Plant growth-promoting bacteria. In: van Elsas JD, Jansson JK, Trevors JT (eds) Modern soil microbiology. CRC/Thomson Publishing, Boca Raton, FL/UK, pp 503–520

    Google Scholar 

  • Seneviratne G, Indrasena IK (2006) Nitrogen fixation in lichens is important for improved rock weathering. J Biosci 31:639–643

    PubMed  CrossRef  Google Scholar 

  • Seneviratne G, Jayasinghearachchi HS (2003) Mycelial colonization by bradyrhizobia and azorhizobia. J Biosci 28:243–247

    PubMed  CrossRef  Google Scholar 

  • Seneviratne G, Jayasinghearachchi HS (2005) A rhizobial biofilm with nitrogenase activity alters nutrient availability in a soil. Soil Biol Biochem 37:1975–1978

    CrossRef  CAS  Google Scholar 

  • Seneviratne G, Kecskés ML, Kennedy IR (2008a) Biofilmed biofertilisers: novel inoculants for efficient nutrient use in plants. In: Kennedy IR, Choudhury ATMA, Kecskés ML, Rose MT (eds) Efficient nutrient use in rice production in Vietnam achieved using inoculants biofertilisers. Proceedings of a project (SMCN/2002/073) workshop held in Hanoi, Vietnam, 12–13 October 2007. ACIAR Proceeding No. 130, ACIAR, Canberra, pp 126–130

    Google Scholar 

  • Seneviratne G, Zavahir JS, Bandara WMMS, Weerasekara MLMAW (2008b) Fungal–bacterial biofilms: their development for novel biotechnological applications. World J Microbiol Biotechnol 24:739–743

    CrossRef  CAS  Google Scholar 

  • Seneviratne G, Thilakaratne RMMS, Jayasekara APDA, Seneviratne KACN, Padmathilake KRE, De Silva MSDL (2009) Developing beneficial microbial biofilms on roots of non-legumes: a novel biofertilizing technique. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategy for crop improvement. Springer, Berlin, Heidelberg, pp 51–61

    CrossRef  Google Scholar 

  • Sivan A, Chet I (1992) Microbial control of plant diseases. In: Mitchell R (ed) Environmental microbiology. Wiley-Liss, New York, pp 335–354

    Google Scholar 

  • Spaepen S, Vanderleyden J, Okon Y (2009) Plant growth-promoting actions of rhizobacteria. Adv Bot Res 51:283–320

    CrossRef  CAS  Google Scholar 

  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    PubMed  CrossRef  CAS  Google Scholar 

  • Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209

    PubMed  CrossRef  CAS  Google Scholar 

  • Thomashow LS (1996) Biological control of plant root pathogens. Curr Opin Biotechnol 7:343–347

    PubMed  CrossRef  CAS  Google Scholar 

  • Timmusk S, Grantcharova N, Gerhart E, Wagner H (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 71:7292–7300

    PubMed  CrossRef  CAS  Google Scholar 

  • Ude S, Arnold DL, Moon CD, Timms-Wilson T, Spiers AJ (2006) Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environ Microbiol 8:1997–2011

    PubMed  CrossRef  CAS  Google Scholar 

  • van Elsas JD, Dijkstra AF, Govarert JM, van Veen JA (1986) Survival of Pseudomonas fluorescens and Bacillus subtilis introduced into soils of different texture in field microplots. FEMS Microbiol Ecol 38:150–160

    CrossRef  Google Scholar 

  • Vance CP (1997) Enhanced agricultural sustainability through biological nitrogen fixation. In: biological fixation of nitrogen for economic and sustainable agriculture. Proceedings of a NATO Advanced Research Workshop, Poznan, Poland, pp 179–185

    Google Scholar 

  • Vilain S, Brözel VS (2006) Multivariate approach to comparing whole-cell proteomes of Bacillus cereus indicates a biofilm specific proteome. J Proteome Res 5:1924–1930

    PubMed  CrossRef  CAS  Google Scholar 

  • von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41:455–482

    CrossRef  Google Scholar 

  • Walker TS, Bais HP, Déziel E, Schweizer HP, Rahme LG, Fall R, Vivanco JM (2004) Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiol 134:320–331

    PubMed  CrossRef  CAS  Google Scholar 

  • Watnick PI, Kolter R (1999) Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 34:586–595

    PubMed  CrossRef  CAS  Google Scholar 

  • Wei HL, Zhang LQ (2006) Quorum-sensing system influences root colonization and biological control ability in Pseudomonas fluorescens 2P24. Antonie Leeuwenhoek 89:267–280

    PubMed  CrossRef  Google Scholar 

  • Xu JM, Cheng HH, Koskinen WC, Molina JAE (1997) Characterization of potentially bioreactive soil organic carbon and nitrogen by acid hydrolysis. Nutr Cycl Agroecosyst 49:267–271

    CrossRef  CAS  Google Scholar 

  • Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem 34:955–963

    CrossRef  CAS  Google Scholar 

  • Zahir AZ, Arshad M, Frankenberger WT Jr (2004) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agron 81:97–168

    CrossRef  CAS  Google Scholar 

  • Zehnder GW, Murphy IF, Sikora EJ, Kloepper JW (2001) Application to rhizobacteria for induced resistance. Eur J Plant Pathol 107:39–50

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gamini Seneviratne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seneviratne, G., Weerasekara, M.L.M.A.W., Seneviratne, K.A.C.N., Zavahir, J.S., Kecskés, M.L., Kennedy, I.R. (2010). Importance of Biofilm Formation in Plant Growth Promoting Rhizobacterial Action. In: Maheshwari, D. (eds) Plant Growth and Health Promoting Bacteria. Microbiology Monographs, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13612-2_4

Download citation