Skip to main content

Regulation of Nitrogen Assimilation in Foliar Fed Legume Plants at Insufficient Molybdenum Supply

  • Chapter
  • First Online:
Plant Growth and Health Promoting Bacteria

Part of the book series: Microbiology Monographs ((MICROMONO,volume 18))

  • 3558 Accesses

Abstract

Formation and function of N2-fixing systems between bacteria from Rhizobiaceae family and legume plants from Fabaceae family are especially sensitive to molybdenum (Mo) deficiency. The hypothesis of the present work was that nitrogen fixation and assimilation in Mo deficient pea and alfalfa plants are enhanced when the nutrients were supplied through the foliage. It was established that foliar fertilization resulted in the increase of nitrogen fixation and biomass accumulation in the absence of Mo. The positive effect of foliar fertilization at insufficient Mo supply on the nitrogen uptake is better expressed in garden pea than in alfalfa. Otherwise, alfalfa was more sensitive to Mo starvation than the pea plants. Insufficient Mo supply leads to significant reduction in plant Mo content and nitrogen fixing activity, while stress induced free amino acids increased repeatedly. The negative effect of Mo exclusion from the nutrient media on nitrogen assimilation and biomass accumulation diminished through the foliar absorbed nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwala S, Chatterjee C, Sharma P, Sharma C, Nautiyal N (1979) Pollen development in maize plants subjected to molybdenum deficiency. Can J Bot 57:1946–1950

    Article  CAS  Google Scholar 

  • Alexander A (1986) Optimum timing of foliar nutrient sprays. In: Alexander A (ed) Foliar fertilization. Kluwer, Dordrecht, The Netherlands, pp 44–60

    Chapter  Google Scholar 

  • Anderson A (1942) Molybdenum deficiency on a South Australian ironstone soil. J Aust Inst Agr Sci 8:73–75

    CAS  Google Scholar 

  • Anderson A (1946) Molybdenum in relation to pasture improvement in South Australia. J Counc Scient Indust Res 19:1–15

    CAS  Google Scholar 

  • Anderson A (1956) Molybdenum deficiencies in legumes in Australia. Soil Sci 81:173–192

    Article  CAS  Google Scholar 

  • Andrews M (1986) The partitioning of nitrate assimilation between root and shoot of higher plants. Plant Cell Environ 9:511–519

    CAS  Google Scholar 

  • Arnon D, Stout P (1939) Molybdenum as an essential element for higher plants. Plant Physiol 14:599–602

    Article  PubMed  CAS  Google Scholar 

  • Atkins CA (1991) Ammonia assimilation and export of nitrogen from the legume nodule. In: Dilworth MJ, Glen AR (eds) Biology and biochemistry of nitrogen fixation. Elsevier, Amsterdam, pp 293–319

    Google Scholar 

  • Becking JH (1961) A requirement of molybdenum for the symbiotic nitrogen fixation in alder (Alnus glutinosa Gaertn.). Plant Soil 15:217–227

    Article  CAS  Google Scholar 

  • Boote K, Gallagher R, Robertson W, Hinson K, Hammond LC (1978) Effect of foliar fertilization on photosynthesis, leaf nutrition and yield of soybean. Agron J 70:787–791

    Article  CAS  Google Scholar 

  • Bown A, Shelp B (1997) The metabolism and functions of gamma-aminobutyric acid. Plant Physiol 115:1–5

    PubMed  CAS  Google Scholar 

  • Brodrick S, Giller K (1991) Root nodules of phaseolus: efficient scavengers of molybdenum for N2-fixation. J Exp Bot 42:679–686

    Article  CAS  Google Scholar 

  • Clarkson DT (1985) Factors affecting mineral nutrient acquisition by plants. Annu Rev Plant Physio 36:77–115

    Article  CAS  Google Scholar 

  • Da Silva P, Tsai S, Bonetti R (1993) Response to inoculation and N fertilization for increased yield and biological nitrogen fixation of common bean (Phaseolus vulgaris L.). Plant Soil 152:123–130

    Article  Google Scholar 

  • Davies E (1945) A case of molybdenum deficiency in New Zealand. Nature 156:392–393

    Article  CAS  Google Scholar 

  • Doring H, Gericke R (1986) The efficiency of foliar fertilization in arid and semi-arid regions. In: Alexander A (ed) Foliar fertilization. Kluwer, Dordrecht, The Netherlands, pp 29–35

    Google Scholar 

  • Fenn L, Hasanein B, Burks C (1995) Calcium-ammonium effects on growth and yield of small grains. Agron J 87:1041–1046

    Article  Google Scholar 

  • Fougére F, Le Rudulier D, Streeter J (1991) Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa (Medicago sativa L.). Plant Physiol 96:1228–1236

    Article  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2002) Nitrogen assimilation and photosynthesis: energetics, interaction and control. In: Foyer CH, Noctor G (eds) Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism. Advances in photosynthesis research, vol 12. Kluwer, The Netherlands, pp 1–22

    Chapter  Google Scholar 

  • Frame J, Charlton J, Laidlaw A (1998) Temperate forage legumes. CAB International, Wallingford

    Google Scholar 

  • Franco A, Munns D (1981) Response of Phaseolus vulgaris L. to molybdenum under acid conditions. Soil Sci Soc Am J 45:1144–1148

    Article  CAS  Google Scholar 

  • Garcia R, Hanway J (1976) Foliar fertilization of soybean during the seed-filling period. Agron J 68:653–657

    Article  Google Scholar 

  • Garten CT, Hanson PJ (1990) Foliar retention of 15N-nitrate and 15N-ammonium by red maple (Acer rubrum) and white oak (Quercus alba) leaves from simulated rain. Environ Exp Bot 30:333–342

    Article  CAS  Google Scholar 

  • Gupta U (1997) Symptoms of molybdenum deficiency and toxicity in crops. In: Gupta UC (ed) Molybdenum in agriculture. Cambridge University Press, New York, pp 160–170

    Chapter  Google Scholar 

  • Gupta U, Lipsett J (1981) Molybdenum in soil, plants, and animals. Adv Agron 34:73–115

    Article  CAS  Google Scholar 

  • Hagstrom G, Berger K (1965) Molybdenum deficiencies of Wisconsin soils. Soil Sci 100:52–56

    Article  CAS  Google Scholar 

  • Hanway J (1979) Foliar fertilization of soybeans during seed-filling. In: Corbin FT (ed) World soybean research conference proceeding, vol 2, pp 409–416

    Google Scholar 

  • Haq M, Mallarino A (2000) Soybean yield and nutrient composition as affected by early season foliar fertilization. Agron J 92:16–24

    Google Scholar 

  • Harper J, Paulsen G (1969) Nitrogen assimilation and protein synthesis in wheat seedlings as affected by mineral nutrition. II. Micronutrients. Plant Physiol 44:636–640

    Article  PubMed  CAS  Google Scholar 

  • Hristozkova M, Geneva M, Stancheva I, Georgiev G (2007a) Response of inoculated foliar fed pea plants (Pisum sativum L.) to reduced Mo supply. Acta Biol Hung 58:87–92

    Article  PubMed  Google Scholar 

  • Hristozkova M, Geneva M, Stancheva I, Georgiev G (2007b) Nitrogen assimilatory enzymes and amino acid content in inoculated foliar fertilized pea plants grown at reduced molybdenum concentration. J Plant Nutr 30:1409–1419

    Article  CAS  Google Scholar 

  • Hristozkova M, Geneva M, Stancheva I (2009) Effect of foliar feeding on nitrogen assimilation in alfalfa plants at insufficient molybdenum supply. Acta Biol Hung 60:211–219

    Article  PubMed  Google Scholar 

  • Ireland R, Lea P (1999) The enzymes of glutamine, glutamate, asparagine, and aspartate metabolism. In: Singh BK (ed) Plant amino acids: biochemistry and biotechnology. Marcel Dekker, New York, pp 49–109

    Google Scholar 

  • Jongruaysup S, Dell B, Bell RW, O’Hara GW, Bradley JS (1997) Effect of molybdenum and inorganic nitrogen on molybdenum redistribution in Black Gram (Vigna mungo L. Hepper) with particular reference to seed fill. Ann Bot (London) 79:67–74

    Article  CAS  Google Scholar 

  • Kaiser B, Gridley K, Brady J, Phillips T, Tyerman S (2005) The role of Molybdenum in agricultural plant production. Ann Bot (London) 96:745–754

    Article  CAS  Google Scholar 

  • Kannan S (1980) Mechanisms of foliar uptake of plant nutrients: accomplishments and prospects. J Plant Nutr 2:717–735

    Article  CAS  Google Scholar 

  • Kathiresan A, Tung P, Chinnappa C, Reid D (1997) Gamma-aminobutyric acid stimulates ethylene biosynthesis in sunflower. Plant Physiol 115:129–135

    Article  PubMed  CAS  Google Scholar 

  • Kuepper G (2003) Foliar fertilization. ATTRA, National Sustainable Agriculture Information Service, Fayetteville, AR

    Google Scholar 

  • Lam H, Coschigano K, Oliveira I, Melo-Oliveira R, Coruzzi G (1996) The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Phys 47:569–593

    Article  CAS  Google Scholar 

  • Lea P, Sodek L, Parry M, Shewry P, Halford N (2007) Asparagine in plants. Ann Appl Biol 150:1–26

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Mendel R, Haensch R (2002) Molybdoenzymes and molybdenum cofactor in plants. J Exp Bot 375:1689–1698

    Article  Google Scholar 

  • Mengel K (2002) Alternative or complementary role of foliar supply in mineral nutrition. Acta Hortic 594:33–48

    CAS  Google Scholar 

  • Mitchell K (1945) Preliminary note on the use of ammonium molybdate to control whiptail in cauliflower and broccoli crops. New Zeal J Sci 27:287–293

    Google Scholar 

  • Notton B (1983) Micronutrients and nitrate reductase. In: Robb DA, Pierpoint WS (eds) Metals and micronutrients: uptake and utilization by plants. Academic, Bath, pp 219–240

    Google Scholar 

  • Palta JA, Nandwal AS, Kumari S, Turner NC (2005) Foliar nitrogen application increase the seed yield and protein content in chickpea (Cicer arietinum L.) subject to terminal drought. Aust J Agr Res 56:105–112

    Article  CAS  Google Scholar 

  • Peoples M, Sudin M, Herridge D (1987) Translocation of nitrogenous compounds in symbiotic and nitrate-fed amide-exporting legumes. J Exp Bot 38:567–579

    Article  CAS  Google Scholar 

  • Peuke A, Jeschke W, Dietz K, Schreiber L, Hartung W (1998) Foliar application of nitrate or ammonium as sole nitrogen supply in Ricinus communis I. Carbon and nitrogen uptake and inflows. New Phytol 138:675–687

    Article  CAS  Google Scholar 

  • Poole W, Randall G, Ham G (1983) Foliar fertilisation of soybean. I. Effect of fertiliser sources, rates and frequency of application. Agron J 75:195–200

    Article  Google Scholar 

  • Puppo A, Groten K, Bastian F, Carzaniga R, Soussi M, Lucas M, Rosario de Felipe M, Harrison J, Vanacker H, Foyer C (2005) Legume nodule senescence: roles for redox and hormone signalling in the orchestration of the natural aging process. New Phytol 165:683–701

    Article  PubMed  CAS  Google Scholar 

  • Ratcliffe R (1995) Metabolic aspects of the anoxic response in plant tissue. In: Smirnoff N (ed) Environment and plant metabolism: flexibility and acclimation. Bios Scientific, Oxford, pp 111–127

    Google Scholar 

  • Rosendahl L, Jakobsen I (1987) Rhizobium strain effects on pea: the relation between nitrogen accumulation, phosphoenolpyrovate carboxylase activity in nodules and asparagine in root bleeding sap. Physiol Plant 71:281–286

    Article  CAS  Google Scholar 

  • Schon M, Blevins D (1990) Foliar boron applications increase the final number of branches and pods on branches of field-grown soybeans. Plant Physiol 92:607–609

    Article  Google Scholar 

  • Schulze J, Shi L, Blumenthal J, Samac DA, Gantt JS, Vance CP (1998) Inhibition of alfalfa root nodule phosphoenolpyruvate carboxylase through an antisense strategy impacts nitrogen fixation and plant growth. Phytochemistry 49:341–346

    Article  CAS  Google Scholar 

  • Stewart G, Larher F (1980) Accumulation of amino acids and related compounds in relation to environmental stress. In: Miflin BJ (ed) The biochemistry of plants, vol 5. Academic, New York, pp 609–635

    Google Scholar 

  • Streeter JG (1981) Effect of nitrate in the rooting medium on carbohydrate composition of soybean nodules. Plant Physiol 69:1429–1434

    Article  Google Scholar 

  • Ta T, Joy K (1986) Metabolism of some amino acids in relation to the photorespiratory nitrogen cycle of pea leaves. Planta 169:117–122

    Article  CAS  Google Scholar 

  • Ta T, Joy K, Ireland R (1984) Amino acid metabolism in pea leaves. Plant Physiol 74:822–826

    Article  PubMed  CAS  Google Scholar 

  • Tyree M, Wescot C, Tabor C, Morse A (1992) Diffusion and electric mobility of KCl within isolated cuticles of Citrus aurantium. Plant Physiol 99:1057–1061

    Article  PubMed  CAS  Google Scholar 

  • Wallace W, Secor J, Schrader L (1984) Rapid accumulation of gamma-aminobutyric acid and alanine in soybean leaves in response to an abrupt transfer to lower temperature, darkness, or mechanical manipulation. Plant Physiol 75:170–175

    Article  PubMed  CAS  Google Scholar 

  • Williams C, Maier N, Bartlett L (2004) Effect of molybdenum foliar sprays on yield, berry size, seed formation, and petiolar nutrient composition of ‘Merlot’ grapevines. J Plant Nutr 27:1891–1916

    Article  CAS  Google Scholar 

  • Wojcieska U, Kocon A (1997) Reaction of faba been plants to soil and foliar N application and K nutrition. Acta Physiol Plant 19:23–28

    Article  Google Scholar 

  • Wójcik P (2004) Uptake of mineral nutrients from foliar fertilization. J Fruit Ornam Plant Res 12:201–218, Special edition

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by The Project “Progress in plant investigations for the improvement of sustainability of agriculture (PISA-INI 14/01.09.2005)” Bulgarian Ministry of Education and Sciences.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hristozkova, M., Geneva, M., Stancheva, I. (2010). Regulation of Nitrogen Assimilation in Foliar Fed Legume Plants at Insufficient Molybdenum Supply. In: Maheshwari, D. (eds) Plant Growth and Health Promoting Bacteria. Microbiology Monographs, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13612-2_18

Download citation

Publish with us

Policies and ethics