Skip to main content

The Role of the C:N:P Stoichiometry in the Carbon Balance Dynamics of the Legume–AMF–Rhizobium Tripartite Symbiotic Association

  • Chapter
  • First Online:
Plant Growth and Health Promoting Bacteria

Part of the book series: Microbiology Monographs ((MICROMONO,volume 18))

Abstract

Synergistic or additive interactions among the partners of the legume tripartite symbiotic association (Rhizobium–Arbuscular mycorrhizal fungi–legume) have been shown in most instances to increase legume productivity. Arbuscular mycorrhizal fungi (AMF) promote increased legume biomass production and photosynthetic rates by increasing the ratio of P to N accumulation. An increase in the P content in legume tissue due to the AMF symbiotic association has been consistently associated with an increase in N accumulation and N productivity in legumes with or without a Rhizobium association. Photosynthetic N use efficiency, irrespective of the inorganic source of N is usually enhanced by increased P supply because of the AMF association. Both light-saturated photosynthetic rates and quantum yields increase in legumes in response to increasing N supply due to the Rhizobium symbiotic association. However, the maximum levels achieved for both light-saturated photosynthesis and quantum yield as a function of N supply concentration depend on both P and CO2 supply rates. The N:P supply ratio controls the legume’s growth and photosynthetic response to elevated atmospheric CO2 concentrations. These findings indicate that the N:P:C supply ratio as influenced by the tripartite symbiotic associations plays a fundamental role in controlling the legume’s photosynthetic rate and biomass productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ågren GI (1985a) Limits to plant production. J Theor Biol 113:89–92

    Article  Google Scholar 

  • Ågren GI (1985b) Theory for growth of plants derived from then nitrogen productivity concept. Physiol Plant 64:17–28

    Article  Google Scholar 

  • Ågren GI (2004) The C:N:P stoichiometry of autotrophs – theory and observations. Ecol Lett 7:185–191

    Article  Google Scholar 

  • Allen MF, Smith WK, Moore TS Jr, Christensen M (1981) Comparative water relations and photosynthesis of mycorrhizal and non-mycorrhizal Bouteloua gracilis H.B.K. lag ex Steud. New Phytol 88:683–693

    Article  Google Scholar 

  • Amthor JS (1986) Evolution and applicability of a whole plant respiration model. J Theor Biol 122:473–490

    Article  Google Scholar 

  • Atkins CA (1984) Efficiencies in the legume/Rhizobium symbiosis. A review. Plant Soil 82:273–284

    Article  CAS  Google Scholar 

  • Azcón De Aguilar C, Azcón R, Barea JM (1979) Endomycorrhizal fungi and Rhizobium as biological fertilizers for Medicago sativa in normal cultivation. Nature 279:325–327

    Article  Google Scholar 

  • Azcón R, Ocampo JA (1981) Factors affecting the vesicular-arbuscular infection and mycorrhizal dependency of thirteen wheat cultivars. New Phytol 87:677–685

    Article  Google Scholar 

  • Azcón R, Ocampo JA (1984) Effect of root exudation on VA mycorrhizal at early stages of plant growth. Plant Soil 82:133–138

    Article  Google Scholar 

  • Azcón R, Barea JM, Elatrach F (1988) Influence of mycorrhiza vs soluble phosphate on growth, nodulation, and N2 fixation (N-15) in alfalfa under different levels of water potential. Biol Fertil Soils 7:28–31

    Article  Google Scholar 

  • Azcón R, Gomez M, Tobar R (1992) Effects of nitrogen source on growth, nutrition, photosynthetic rate and nitrogen metabolism of mycorrhizal and phosphorus-fertilized plants of Lactuca sativa L. New Phytol 121:227–234

    Article  Google Scholar 

  • Barea JM, Azcón-Aguilar C (1983) Mycorrhizas and their significance in nodulating nitrogen-fixing plants. Adv Agron 36:1–34

    Article  Google Scholar 

  • Barea JM, Azcon R, Azcon-Aguilar C (1992) Vesicular-arbuscular mycorrhizal fungi in nitrogen-fixing systems. Methods Microbiol 24:391–416

    Article  Google Scholar 

  • Bayne HG, Brown MS, Bethlenfalvay GJ (1984) Defoliation effects on mycorrhizal colonization, nitrogen fixation and photosynthesis in the Glycine-Glomus- symbiosis. Physiol Plant 62:576–580

    Article  CAS  Google Scholar 

  • Bergersen FJ (1971) The biochemistry of nitrogen fixation in legumes. Annu Rev Plant Physiol 22:121–140

    Article  CAS  Google Scholar 

  • Bethlenfalvay GJ (1992) Mycorrhizae and crop productivity. In: Bethlenfalvay GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. ASA Special Publication Number 54. American Society of Agronomy, Inc. Crop Science Society of America, Inc. Soil Science Society of America, Inc. Madison, WI, USA, pp 1–27

    Google Scholar 

  • Bethlenfalvay GJ, Brown MS (1985) The Glycine-Glomus-Rhizobium symbiosis II. Antagonistic effects between mycorrhizal colonization and nodulation. Plant Physiol 79:1054–1058

    Article  PubMed  CAS  Google Scholar 

  • Bethlenfalvay GJ, Newton WE (1991) Agro-ecological aspects of the mycorrhizal, nitrogen-fixing legume symbiosis. In: Keister DL, Cregan P (eds) The rhizosphere and plant growth. Kluwer, Dordrecht, The Netherlands, pp 349–354

    Chapter  Google Scholar 

  • Bethlenfalvay GJ, Brown MS, Pacovsky RS (1982) Relationships between host and endophyte development in mycorrhizal soybeans. New Phytol 90:537–543

    Article  Google Scholar 

  • Betlenfalvay GJ, Yoder JF (1981) The Glycine-Glomus-Rhizobium symbiosis I. Phosphorus effect on nitrogen fixation and mycorrhizal infection. Physiol Plant 52:141–145

    Article  Google Scholar 

  • Black KG, Mitchell DT, Osborne BA (2000) Effect of mycorrhizal-enhanced phosphate status on carbon partitioning, translocation and photosynthesis in cucumber. Plant Cell Environ 23:797–809

    Article  CAS  Google Scholar 

  • Bould C, Hewitt EJ, Needham P (1983) Diagnosis of mineral disorders in plants, Chapter 3. In: Robinson JBD (ed) Principles, vol 1. Her Majesty’s Stationery Office, London, p 133

    Google Scholar 

  • Brooks A (1986) Effects of phosphorus nutrition on ribulose-1, 5-bisphosphate carboxylase activation, photosynthetic quantum yield and amounts of some Calvin-cycle metabolites in spinach leaves. Aust J Plant Physiol 13:221–237

    Article  CAS  Google Scholar 

  • Brooks A, Woo KC, Wong SC (1988) Effects of phosphorus nutrition on the response of photosynthesis to CO2 and O2 activation of ribulose bisphosphate carboxylase and amounts of ribulose bisphosphate and 3-phosphoglycerate in spinach leaves. Photosynth Res 15:133–141

    Article  CAS  Google Scholar 

  • Brown MS, Bethlenfalvay GJ (1986) The Glycine-Glomus-Rhizobium symbiosis. VI. Endophyte effects on leaf carbon, nitrogen and phosphorus nutrition. J Plant Nutr 9:1199–1212

    Article  Google Scholar 

  • Brown MS, Bethlenfalvay GJ (1988) The Glycine-Glomus-Rhizobium symbiosis. VII. Photosynthetic nutrient-use efficiency in nodulated, mycorrhizal soybeans. Plant Physiol 86:1292–1297

    Article  PubMed  CAS  Google Scholar 

  • Brown R, Broadbent D (1950) The development of cells in the growing zones of the root. J Exp Bot 1:249

    Article  Google Scholar 

  • Buwalda JG, Goh KM (1982) Host-fungus competition for carbon a cause of growth depressions in vesicular-arbuscular mycorrhizal ryegrass. Soil Biol Biochem 14:103–106

    Article  CAS  Google Scholar 

  • Cihacek LJ (1993) Phosphorus source effects on alfalfa yield, total nitrogen content, and soil test phosphorus. Commun Soil Sci Plant Anal 24:2043–2057

    Article  Google Scholar 

  • Cockburn W, Baldry CW, Walker DA (1967a) Some effects of inorganic phosphate on O2 evolution by isolated chloroplasts. Biochim Biophys Acta 143:614–624

    Article  PubMed  CAS  Google Scholar 

  • Cockburn W, Baldry CW, Walker DA (1967b) Oxygen evolution by isolated chloroplasts with carbon dioxide as the hydrogen acceptor. A requirement for orthophosphate or pyrophosphate. Biochim Biophys Acta 131:594–596

    Article  PubMed  CAS  Google Scholar 

  • Cox G, Sanders FE, Tinker PB, Wild JA (1975) Ultrastructural evidence relating to host-endophyte transfer in a vesicular-arbuscular mycorrhiza. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic, London, p 297

    Google Scholar 

  • Cralle HT, Heichel GH (1986) Photosynthate and dry matter distribution of effectively and ineffectively nodulated alfalfa. Crop Sci 26:117–121

    Article  Google Scholar 

  • Cralle HT, Heichel GH, Barnes DK (1987) Photosynthate partitioning in plants of alfalfa population selected for high and low nodule mass. Crop Sci 27:96–100

    Article  CAS  Google Scholar 

  • Cromer RN, Jarvis PG (1990) Growth and biomass partitioning in Eucalyptus grandis seedlings in response to nitrogen supply. Aust J Plant Physiol 17:503–515

    Article  CAS  Google Scholar 

  • Daft MJ (1978) Nitrogen fixation in nodulated and mycorrhizal crop plants. Ann Appl Biol 86:461–462

    Article  Google Scholar 

  • De Mooy CJ, Pesek E, Spaldon E (1973) Mineral nutrition. In: Caldwell BE (ed) Soybeans: improvement, production and uses. American Society of Agronomy, Madison, WI, pp 267–352

    Google Scholar 

  • Diedrichs C (1983a) Influence of light on the efficacy of vesicular-arbuscular mycorrhiza in tropical and subtropical plants. II. Effect of light intensity under growth chamber conditions. Angew Bot 57:45–53

    Google Scholar 

  • Diedrichs C (1983b) Influence of light on the efficacy of vesicular-arbuscular mycorrhiza in tropical and subtropical plants. III. The effect of day length. Angew Bot 57:55–67

    Google Scholar 

  • Douds DD Jr, Johnson CR, Koch KE (1988) Carbon cost of the fungal symbiont relative to net leaf P accumulation in a split-root VA mycorrhizal symbiosis. Plant Physiol 86:491–496

    Article  PubMed  CAS  Google Scholar 

  • Eissenstat DM, Graham JH, Syvertsen JP, Drouillard DL (1993) Carbon economy of sour orange in relation to mycorrhizal colonization. Ann Bot 71:1–10

    Article  CAS  Google Scholar 

  • Ericsson T, Ingestad T (1988) Nutrition and growth of birch seedlings at varied relative phosphorus addition rates. Physiol Plant 72:227–235

    Article  CAS  Google Scholar 

  • Esua K (1958) Plant anatomy. Wiley/Chapman and Hall, New York

    Google Scholar 

  • Farquhar GD, von Caemmerer S (1982) Modelling of photosynthetic response to environmental conditions. In: Lange O, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology (N.S.), vol. 12B, vol II, Physiological plant ecology. Springer, Berlin, pp 549–587

    Google Scholar 

  • Fay P, Mitchell DT, Osborne BA (1996) Photosynthesis and nutrient-use efficiency in barley in response to low arbuscular mycorrhizal colonization and addition of phosphorus. New Phytol 132:425–433

    Article  CAS  Google Scholar 

  • Fitter AH (1991) Costs and benefits of mycorrhizas: implications for functioning under natural conditions. Experientia 47:350–355

    Article  Google Scholar 

  • Fredeen AL, Terry N (1988) Influence of vesicular-arbuscular mycorrhizal infection and soil phosphorus level on growth and metabolism of soybean. Can J Bot 66:2311–2316

    Google Scholar 

  • Garnier E, Koch GW, Roy J, Mooney HA (1989) Responses of wild plants to nitrate availability: relationships between growth rate and nitrate uptake parameters, a case study with two Bromus species, and a survey. Oecologia 79:542–550

    Article  Google Scholar 

  • Giaguinta RT (1983) Phloem loading of sucrose. Annu Rev Plant Physiol 34:347–387

    Article  Google Scholar 

  • Gordon AJ, Ryle GJA, Mitchell DF, Powell CE (1985) The flux of 14C labelled photosynthate through soybean root nodules during N2 fixation. J Exp Bot 36:756–759

    Article  CAS  Google Scholar 

  • Graham JH, Leonard RT, Menge JA (1981) Membrane-mediated decrease in root exudation responsible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formation. Plant Physiol 68:548–552

    Article  PubMed  CAS  Google Scholar 

  • Gray VM (1996) Alfalfa. In: Zamski E, Schaffer AA (eds) Photoassimilate distribution in plants and crops: source–sink relationships. Marcel Dekker, New York, pp 759–779

    Google Scholar 

  • Gray VM (2000) A comparison of two approaches for modelling (Manihot esculenta Crantz.) crop growth. Ann Bot 85:77–90

    Article  Google Scholar 

  • Greenwood DJ, Gastal F, Lemaire G, Draycott A, Millard P, Neeteson JJ (1991) Growth rate and % N of field grown crops: theory and experiments. Ann Bot 67:181–190

    CAS  Google Scholar 

  • Grünweig J, Korner C (2003) Differential phosphorus and nitrogen effects drive species and community responses to elevated CO2 in semi-arid grassland. Funct Ecol 17:766–777

    Article  Google Scholar 

  • Haaker H (1988) Biochemistry and physiology of nitrogen fixation. Bioessays 9:112–117

    Article  CAS  Google Scholar 

  • Harris D, Paul EA (1987) Carbon requirements of vesicular-arbuscular mycorrhizae. In: Safir GR (ed) Ecophysiology of mycorrhizal plants. Florida, CRC, pp 93–105

    Google Scholar 

  • Harris RS, Pacovsky RS, Paul EA (1985) Carbon economy of soybean-Rhizobium-Glomus associations. New Phytol 101:427–440

    Article  CAS  Google Scholar 

  • Heath OVS (1969) The physiological aspects of photosynthesis. Stanford University Press, Stanford, CA

    Google Scholar 

  • Hedin LO (2004) Global organization of terrestrial nutrient interactions. Proc Natl Acad Sci USA 101:10849–10850

    Article  PubMed  CAS  Google Scholar 

  • Heytler PG, Hardy RWF (1984) Calorimetry of nitrogenase-mediated reductions in detached soybean nodules. Plant Physiol 75:304–310

    Article  PubMed  CAS  Google Scholar 

  • Hirose T (1986) Nitrogen uptake and plant growth. II. An empirical model of vegetative growth and partitioning. Ann Bot 58:487–496

    Article  Google Scholar 

  • Hirose T (1988) Modelling the relative growth rate as a function of plant nitrogen concentration. Physiol Plant 72:185–189

    Article  CAS  Google Scholar 

  • Hirose T, Freusen AHJ, Lambers H (1988) Modelling the responses to nitrogen availability of two Plantago species grown at a range of exponential nutrient addition rates. Plant Cell Environ 11:827–834

    Article  Google Scholar 

  • Hostak MS, Henson CA, Duke SH, Vandenbosch KA (1987) Starch granule distribution between cell types of alfalfa nodules as affected by symbiotic development. Can J Bot 65:1108–1115

    Article  Google Scholar 

  • Ingestad T, Ågren GI (1991) The influence of plant nutrition on biomass allocation. Ecol Appl 1:168–174

    Article  Google Scholar 

  • Irving DE, Silsbury JH (1987) A comparison of the rate of maintenance respiration in some crop legumes and tobacco determined by three methods. Ann Bot 59:257–264

    Google Scholar 

  • Israel DW (1987) Investigation of the role of phosphorus in symbiotic dinitrogen fixation. Plant Physiol 84:835–840

    Article  PubMed  CAS  Google Scholar 

  • Israel DW (1993) Symbiotic dinitrogen fixation and host-plant growth during development of and recovery of phosphorus deficiency. Physiol Plant 88:294–300

    Article  CAS  Google Scholar 

  • Jakobsen I, Rosendahl L (1990) Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plant. New Phytol 115:77–83

    Article  Google Scholar 

  • Jayachandran K, Schwab AP, Hetrick BAD (1992) Mineralization of organic phosphorus by vesicular-arbuscular mycorrhizal fungi. Soil Biol Biochem 24:897–903

    Article  CAS  Google Scholar 

  • Jia Y, Gray VM (2004a) Interrelationships between nitrogen supply and photosynthetic parameters in Vicia faba L. Photosynthetica 41:605–610

    Article  Google Scholar 

  • Jia Y, Gray VM (2004b) Influence of phosphorus nitrogen on photosynthetic parameters and growth in Vicia faba L. Photosynthetica 42:535–542

    Article  CAS  Google Scholar 

  • Jia Y, Gray VM (2007) The influence N and P supply on the short-term responses of elevated CO2 in faba bean (Vicia faba L.). S Afr J Bot 73:466–470

    Article  CAS  Google Scholar 

  • Jia Y, Gray VM (2008) Growth yield of Vicia faba L in response to microbial symbiotic associations. S Afr J Bot 74:25–32

    Article  Google Scholar 

  • Jia Y, Gray VM, Straker CJ (2004) The influence of Rhizobium and arbuscular mycorrhizal fungi on nitrogen and phosphorus accumulation by Vicia faba. Ann Bot 94:251–258

    Article  PubMed  CAS  Google Scholar 

  • Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M, Giller KE (2009) Are the rates of photosynthesis stimulated by carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41:1233–1244

    Article  CAS  Google Scholar 

  • Koch KE, Johnson CR (1984) Photosynthate partitioning in split-root citrus seedlings with mycorrhizal and nonmycorrhizal root systems. Plant Physiol 75:26–30

    Article  PubMed  CAS  Google Scholar 

  • Koide R (1985) The effect of VA mycorrhizal infection and phosphorus status on sunflower hydraulic and stomatal properties. J Exp Bot 36:1087–1089

    Article  Google Scholar 

  • Kouchi H, Nakaji K, Yoneyama T, Ishizuka J (1985) Dynamics of carbon photosynthetically assimilated in nodulated soybean plants under steady state conditions. 3. Time course of study 14C incorporation into soluble metabolites and respiratory evolution of CO2 from roots and nodules. Ann Bot 56:333–346

    CAS  Google Scholar 

  • Kucey RMN, Paul EA (1982a) Biomass of mycorrhizal fungi associated with bean roots. Soil Biol Biochem 14:413–414

    Article  Google Scholar 

  • Kucey RMN, Paul EA (1982b) Carbon flow, photosynthesis and N2 fixation in mycorrhizal and nodulated faba beans (Vicia faba L.). Soil Biol Biochem 14:407–412

    Article  Google Scholar 

  • Lawlor DW (1987) Photosynthesis: metabolism, control, and physiology. Longman Scientific & Technical, New York

    Google Scholar 

  • MacDuff JH, Jarvis SC, Larsson CM, Oscarson P (1993) Plant growth in relation to the supply and uptake of NO 3 : A comparison between relative addition rate and external concentration as driving variables. J Exp Bot 44:1475–1484

    Article  CAS  Google Scholar 

  • Mächler F, Schnyder H, Nösberger J (1984) Influence of inorganic photosynthesis of wheat chloroplasts. J Exp Bot 35:481–487

    Article  Google Scholar 

  • Mahon JD (1983) Energy relationships, Chapter 8. In: Broughton WJ (ed) Nitrogen fixation, vol 3. Clarendon, Oxford, UK

    Google Scholar 

  • Marcus Y, Gurevitz M (2000) Activation of cyanobacterial RuBP-carboxylase/oxygenase is facilitated by inorganic phosphate via two independent mechanisms. Eur J Biochem 267:5995–6003

    Article  PubMed  CAS  Google Scholar 

  • McCree KJ, Silsbury JH (1978) Growth and maintenance requirements of subterranean clover. Crop Sci 18:13–18

    Article  CAS  Google Scholar 

  • Miller RW, Donahue RL (1990) Soils: an introduction to soils and plant growth, 6th edn. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Miller RM, Miller SP, Jastrow JD, Rivetta CB (2002) Mycorrhizal mediated feedbacks influence net carbon gain and nutrient uptake in Andropogon gerardii. New Phytol 155:149–162

    Article  CAS  Google Scholar 

  • Minchin FR, Witty JF (2005) Respiratory/carbon costs of symbiotic nitrogen fixation in legumes. In: Lambers H, Ribas-Carbo M (eds) Plant respiration. Springer, Dordrecht, pp 195–205

    Chapter  Google Scholar 

  • Minchin FR, Summerfield RJ, Hadley P, Roberts EH, Rawsthorne S (1981) Carbon and nitrogen nutrition of nodulated roots of grain legumes. Plant Cell Environ 4:5–26

    Article  CAS  Google Scholar 

  • Minchin FR, Witty JF, Sheehy JE, Müller M (1983) A major error in the acetylene reduction assay: decreases in nodular nitrogenase activity under assay conditions. J Exp Bot 34:641–649

    Article  CAS  Google Scholar 

  • Mühlethaler K (1977) Introduction to structure and function of the photosynthesis apparatus. In: Tresbst A, Avon M (eds) Encyclopedia of pant physiology (N.S.), Vol 5, vol I, Photosynthesis. Springer, Berlin, pp 503–521

    Google Scholar 

  • Nobel PS (1974) Biophysical plant physiology. WH Freeman, San Francisco

    Google Scholar 

  • Parsons R, Raven JA, Sprent JL (1992) A simple open flow system used to measure acetylene reduction in Sesbania rostrata stem and root nodules. J Exp Bot 43:595–604

    Article  CAS  Google Scholar 

  • Paul EA, Clark FE (1989) Soil microbiology and biochemistry. Academic, San Diego

    Google Scholar 

  • Paul EA, Kucey RMN (1981) Carbon flow in plant microbial associations. Science 213:473–474

    Article  PubMed  CAS  Google Scholar 

  • Payne WJ (1970) Energy and growth of heterotrophs. Annu Rev Microbiol 24:17–52

    Article  PubMed  CAS  Google Scholar 

  • Pearson JN, Jakobsen I (1993) Symbiotic exchange of carbon and phosphorus between cucumber and three arbuscular mycorrhizal fungi. New Phytol 124:481–494

    Article  CAS  Google Scholar 

  • Philippot S, Allirand JM, Chartier M, Gosse G (1991) The role of different daily irradiations on shoot growth and root/shoot ratio in Lucerne (Medicago sativa L.). Ann Bot 68:329–335

    Google Scholar 

  • Phillips DA (1980) Efficiency of symbiotic nitrogen fixation in legumes. Annu Rev Plant Physiol 31:29–49

    Article  CAS  Google Scholar 

  • Piccini D, Ocampo JA, Bedmar EJ (1988) Possible influence of Rhizobium on VA mycorrhiza metabolic-activity in double symbiosis of alfalfa plants (Medicago sativa L.). Biol Fertil Soils 6:65–67

    Article  Google Scholar 

  • Pieters A, Paul MJ, Lawlor DW (2001) Low sink demand limits photosynthesis under Pi deficiency. J Exp Bot 52:1083–1091

    Article  PubMed  CAS  Google Scholar 

  • Rainbird RM, William DH, Hardy RWF (1984) Experimental determination of the respiration associated with Soybean/Rhizobium nitrogenase function, nodule maintenance, and total nodule nitrogen fixation. Plant Physiol 75:49–53

    Article  PubMed  CAS  Google Scholar 

  • Rao IM, Terry N (1989) Leaf phosphate status, photosynthesis, and carbon partitioning in sugar beet. I. Changes in growth, gas exchange, and Calvin cycle enzymes. Plant Physiol 90:814–819

    Article  PubMed  CAS  Google Scholar 

  • Rao IM, Terry N (1995) Leaf phosphate status, photosynthesis, and carbon partitioning in sugar beet. IV. Changes with time following increased supply of phosphate to low-phosphate plants. Plant Physiol 107:1313–1321

    PubMed  CAS  Google Scholar 

  • Rao IM, Aruanantham AR, Terry N (1989a) Leaf phosphate status, photosynthesis and carbon partitioning in sugar beet. II. Diurnal change in sugar phosphates, adenylates, and nicotinamide nucleotides. Plant Physiol 90:820–826

    Article  PubMed  CAS  Google Scholar 

  • Rao IM, Aruanantham AR, Terry N (1989b) Diurnal change in sugar phosphates, adenylates, and nicotinamide nucleotides in sugar beet leaves. Photosynth Res 23:205–212

    Google Scholar 

  • Rao IM, Fredeen AL, Terry N (1990) Leaf phosphate status, photosynthesis, and carbon partitioning in sugar beet. III. Diurnal changes in carbon partitioning and carbon export. Plant Physiol 92:29–36

    Article  PubMed  CAS  Google Scholar 

  • Rawsthorne S, Minchin FR, Summerfield RJ, Cookson C, Coombs J (1980) Carbon and nitrogen metabolism in legume root nodule. Phytochemistry 19:341–355

    Article  CAS  Google Scholar 

  • Ribet J, Drevon JJ (1995) Increase in permeability to oxygen and in oxygen uptake of soybean nodules under limiting phosphorus nutrition. Physiol Plant 94:298–304

    Article  CAS  Google Scholar 

  • Robinson D (1986) Compensatory changes in the partitioning of dry matter in relation to nitrogen uptake and optimal variations in growth. Ann Bot 58:841–848

    Google Scholar 

  • Ryle GJ, Arnott RA, Powell CE, Gordon AJ (1984) N2 fixation and the respiratory costs of nodules, nitrogenase activity, and nodule growth and maintenance in Fiskeby soybean. J Exp Bot 35:1156–1165

    Article  CAS  Google Scholar 

  • Sa TM, Israel DW (1991) Energy status and functioning of phosphorus-deficient soybean nodules. Plant Physiol 97:928–935

    Article  PubMed  CAS  Google Scholar 

  • Sa TM, Israel DW (1995) Nitrogen assimilation in nitrogen-fixing soybean plants during phosphorus deficiency. Crop Sci 35:814–820

    Article  CAS  Google Scholar 

  • Sadras VO (2006) The N:P stoichiometry of cereal, grain legume and oilseed crops. Field Crops Res 95:13–29

    Article  Google Scholar 

  • Salsac L, Drevon J, Zengbe M, Cleyet Mariel JC, Obaton M (1984) Energy requirements of symbiotic nitrogen fixation. Physiol Veg 22:509–521

    CAS  Google Scholar 

  • Same BI, Robson AD, Abbott LK (1983) Phosphorus, soluble carbohydrates and endomycorrhizal infection. Soil Biol Biochem 15:593–597

    Article  CAS  Google Scholar 

  • Scaife A, Turner M, Wood P (1983) Vegetables: diagnosis of mineral disorders in plants. In: Robinson JBD (ed) Vol 2. Her Majesty’s Stationery Office, London.

    Google Scholar 

  • Scannnerini S, Bonfante-Fasolo P (1983) Comparative ultrastructural analysis of mycorrhizal associations. Can J Bot 61:917–943

    Article  Google Scholar 

  • Schmitt MR, Edwards GE (1981) Photosynthetic capacity and nitrogen use efficiency of maize, wheat, and rice: A comparison between C3 and C4 photosynthesis. J Exp Bot 32:459–466

    Article  CAS  Google Scholar 

  • Schubert KR, Ryle JA (1980) The energy requirement for nitrogen fixation in nodulated legumes. In: Summerfield RJ, Bunting AH (eds) Advances in legume science. Royal Botanic Gardens, Kew, pp 85–96

    Google Scholar 

  • Schubert KR, Wolk CP (1982) The energetic of biological nitrogen fixation. Workshop summaries. American Society of Plant Physiology, Rockville, MD, USA

    Google Scholar 

  • Schwab SM, Menge JA, Leonard RT (1983) Comparison of stages of vesicular-arbuscular mycorrhiza formation in Sudan grass grown under two levels of phosphorus nutrition. Am J Bot 70:1225–1231

    Article  CAS  Google Scholar 

  • Schwab SM, Menge JA, Tinker PB (1991) Regulation of nutrient transfer between host and fungus in vesicular-arbuscular mycorrhizas. New Phytol 117:387–398

    Article  CAS  Google Scholar 

  • Sieverding E (1991) Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Deutsche Gesellschaft fur TechnischeZusammernarbeit (GTZ), GmbH, Eschborn

    Google Scholar 

  • Sinclair TR, Horie T (1989) Leaf nitrogen, photosynthesis, and crop radiation use efficiency: a review. Crop Sci 29:90–98

    Article  Google Scholar 

  • Singleton PW, Abdel-Magid HM, Tavares JW (1985) Effect of phosphorus on the effectiveness of strains of Rhizobium japonicum. Soil Sci Soc Am J 49:613–616

    Article  CAS  Google Scholar 

  • Skot L, Hirsch PR, Witty JF (1986) Genetic factors in Rhizobium affecting the symbiotic carbon costs of N2 fixation and host plant biomass production. J Appl Bacteriol 61:239–246

    Article  Google Scholar 

  • Snellgrove RC, Splittstoesser WE, Stribley DP, Tinker PB (1982) The distribution of carbon and the demand of the fungal symbiont in leek plants with vesicular-arbuscular mycorrhizas. New Phytol 92:75–87

    Article  Google Scholar 

  • Son CL, Smith SE (1988) Mycorrhizal growth responses:interactions between photon irradiance and phosphorus nutrition. New Phytol 108:305–314

    Article  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecular to the biosphere. Princeton University Press, Princeton

    Google Scholar 

  • Stribley KG, Tinker PB, Rayner JH (1980) Relation of internal phosphorus concentration and plant weight in plants infected by vesicular-arbuscular mycorrhizas. New Phytol 86:261–266

    Article  CAS  Google Scholar 

  • Tester M, Smith SE, Walker NA (1986) Effects of photon irradiance on the growth of shoots and roots, on the rate of initiation of mycorrhizal infection and on the growth of infection units in Trifolium subterraneum L. New Phytol 103:375–390

    Article  Google Scholar 

  • Toth R, Miller RM (1984) Dynamics of arbuscule development and degeneration in a Zea mays mycorrhiza. Am J Bot 71:449–460

    Article  Google Scholar 

  • Toth R, Doane C, Bennett E, Alexander T (1990) Correlation between host-fungal surface areas and percent colonization in VA mycorrhizae. Mycologia 82:519–522

    Article  Google Scholar 

  • Twary S, Heichel GH (1991) Carbon costs of dinitrogen fixation associated with dry matter accumulation alfalfa. Crop Sci 31:985–992

    Article  CAS  Google Scholar 

  • Usuda H, Edward GE (1982) Influence of varying CO2 and orthophosphate concentrations on rates of photosynthesis, and synthesis of glycolate and dihydroxyacetone phosphate by wheat chloroplasts. Plant Physiol 69:469–473

    Article  PubMed  CAS  Google Scholar 

  • Usuda H, Shimogawara K (1991) Phosphate deficiency in maize. I. Leaf phosphate status, growth, photosynthesis and carbon partitioning. Plant Cell Physiol 32:497–504

    CAS  Google Scholar 

  • Vance CP, Heichel GH (1991) Carbon in N2 fixation: limitation or exquisite adaptation. Annu Rev Plant Physiol Plant Mol Biol 42:373–390

    Article  CAS  Google Scholar 

  • Walsh KB, Vessey JK, Layzell DB (1987) Carbohydrate supply and N2 fixation in soybean. Plant Physiol 85:135–144

    Article  Google Scholar 

  • Wang GM, Coleman DC, Freckman DW, Dyer MI, McNaughton SJ, Acra MA, Goeschl JD (1989) Carbon partitioning patterns of mycorrhizal versus non-mycorrhizal plants: real-time dynamic measuring using 11CO2. New Phytol 112:489–493

    Article  Google Scholar 

  • Warren CR, Adams MA (2001) Distribution of N, Rubisco and photosynthesis in Pinus pinaster and acclimation to light. Plant Cell Environ 24:598–609

    Article  Google Scholar 

  • Wilcox HE (1991) Mycorrhizae. In: Waisel Y, Eschel A, Kafkafi U (eds) Plant roots: the hidden half. Marcell Dekker, New York, pp 731–765

    Google Scholar 

  • Wright DP, Scholes JD, Read DJ (1998a) Effects of VA mycorrhizal colonization on photosynthesis and biomass production of Trifolium repens L. Plant Cell Environ 21:209–216

    Article  Google Scholar 

  • Wright DP, Read DJ, Scholes JD (1998b) Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L. Plant Cell Environ 21:881–891

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent M. Gray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gray, V.M. (2010). The Role of the C:N:P Stoichiometry in the Carbon Balance Dynamics of the Legume–AMF–Rhizobium Tripartite Symbiotic Association. In: Maheshwari, D. (eds) Plant Growth and Health Promoting Bacteria. Microbiology Monographs, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13612-2_17

Download citation

Publish with us

Policies and ethics