Advertisement

Icosahedral grids

  • Masaki Satoh
Chapter
Part of the Springer Praxis Books book series (PRAXIS)

Abstract

In this chapter, we describe an icosahedral grid method for spherical grid discretization of global atmospheric models. An icosahedral grid is applied to a shallow-water model in this chapter, and application to a global three-dimensional model will be shown in the next chapter.

Keywords

Control Volume Shallow Water Equation Atmospheric General Circulation Model Centered Grid Standard Grid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and suggested reading

  1. Adcroft, A., Campin, J.-M., Hill, C., and Marshall, J., 2004: Implementation of an atmosphere-ocean general circulation model on the expanded spherical cube. Mon. Wea. Rev., 132, 2845–2863.CrossRefGoogle Scholar
  2. Baba, Y., Takahashi, K., Sugimura, T., and Goto, K., 2010: Dynamical core of an atmospheric general circulation model on a Yin-Yang grid. Mon. Wea. Rev., 138, 3988–4005.CrossRefGoogle Scholar
  3. Baumgardner, J. R. and Frederickson, P. O., 1985: Icosahedral discretization of the two-sphere. SIAM J. Numer. Anal., 22, 1107–1115.CrossRefGoogle Scholar
  4. Blackburn, M., Williamson, D. L, Nakajima, K., Ohfuchi, W., Takahashi, Y.O., Hayashi, Y.-Y., Nakamura, H., Ishiwatari, M., McGregor, J., Borth, H., Wirth, V., Frank, H., Bechtold, P., Wedi, N.P., Tomita, H., Satoh, M., Zhao,Google Scholar
  5. M., Held, I. M., Suarez, M. J., Lee, M.-I., Watanabe, M., Kimoto, M., Liu, Y., Wang, Z., Molod, A., Rajendran, K., Kitoh A., and Stratton R., 2012: The Aqua Planet Experiment (APE): Control SST Simulation. J. Meteor. Soc. Japan, 91A, in press, doi:10.2151/jmsj.2013-A02.Google Scholar
  6. Cooley, J.W. and Turkey, J.W., 1965: An algorithm for the machine computation of complex Fourier series. Math. Comput., 19, 297–301.Google Scholar
  7. Côté, J., 1988: A Lagrange multiplier approach for the metric terms of semi- Lagrangian models on the sphere. Q. J. R. Meteorol. Soc., 114, 1347–1352.Google Scholar
  8. Cullen, M. J.P., 1974: Integration of the primitive equations on a sphere using the finite element method. Q. J. R. Meteorol. Soc., 100, 555–562.CrossRefGoogle Scholar
  9. Cullen, M. J.P. and Hall, C.D., 1979: Forecasting and general circulation results from finite element models. Q. J. R. Meteorol. Soc., 105, 571–591.CrossRefGoogle Scholar
  10. Dudhia, J. and Bresch, J. F., 2002: A global version of PSU-NCAR mesoscale model. Mon. Wea. Rev., 130, 2989–3007.CrossRefGoogle Scholar
  11. Gassmann, A., 2011: Inspection of hexagonal and triangular C-grid discretizations of the shallow water equations. J. Comp. Phys., 230, 2706–2721.CrossRefGoogle Scholar
  12. Heikes, R.H. and Randall, D.A., 1995a: Numerical integration of the shallowwater equations on a twisted icosahedral grid. Part I: Basic design and results of tests. Mon. Wea. Rev., 123, 1862–1880.CrossRefGoogle Scholar
  13. Heikes, R.H. and Randall, D.A., 1995b: Numerical integration of the shallowwater equations on a twisted icosahedral grid. Part II: A detailed description of the grid and analysis of numerical accuracy. Mon. Wea. Rev., 123, 1881– 1887.Google Scholar
  14. Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 2293–2307.CrossRefGoogle Scholar
  15. Masuda, Y. and Ohnishi, H., 1986: An integration scheme of the primitive equation model with an icosahedral-hexagonal grid system and its application to the shallow water equations, Short- and Medium-Range Numerical Weather Prediction. Collection of Papers Presented at the WMO/IUGG NWP Symposium, Tokyo, Aug. 4–8 1986, Japan Meteorological Society, 317–326.Google Scholar
  16. Majewski, D., Liermann, D., Prohl, P., Ritter, B., Buchhold, M., Hanisch, T., Paul, G., and Wergen, W., 2002: The operational global icosahedralhexagonal gridpoint model GME: description and high-resolution tests. Mon. Wea. Rev., 130, 319–338.CrossRefGoogle Scholar
  17. McGregor, J. L., 1996: Semi-Lagrangian advection on conformal-cubic grids, Mon. Wea. Rev., 124, 1311–1322.CrossRefGoogle Scholar
  18. Mesinger, D., 2000: Numerical methods: The Arakawa approach, horizontal grid, global, and limited-area modeling. In General Circulation Model Development, edited by D. A. Randall. Academic Press, 373–419.Google Scholar
  19. Miura, H. and Kimoto, M., 2005: A comparison of grid quality of optimized spherical hexagonal-pentagonal geodesic grids. Mon. Wea. Rev., 133, 2817– 2833.CrossRefGoogle Scholar
  20. Phillips, N.A., 1959: Numerical integration of the primitive equation on the hemisphere. Mon. Wea. Rev., 87, 333–345.CrossRefGoogle Scholar
  21. Purser, R. J. and Rancic, M., 1998: Smooth quasi-homogeneous gridding of the sphere. Q. J. R. Meteor. Soc., 124, 637–652.CrossRefGoogle Scholar
  22. Rancic, M., Purser, R. J., and Mesinger, F.,1996: A global shallow-water model using an expanded spherical cube: Gnomonic versus conformal coordinates. Q. J. R. Met. Soc., 122, 959–982.Google Scholar
  23. Randall, D.A., 1994: Geostrophic adjustment and finite-difference shallow water equations. Mon. Wea. Rev., 122, 1371–1377.CrossRefGoogle Scholar
  24. Ringler, T.D., Heikes, R.H. and Randall, D.A., 2000: Modeling the atmospheric general circulation using a spherical geodesic grid: A new class of dynamical cores. Mon. Wea. Rev., 128, 2471–2490.CrossRefGoogle Scholar
  25. Ringler, T.D. and Randall, D.A., 2002a: A potential enstrophy and energy conserving numerical scheme for solution of the shallow-water equations on a geodesic grid, Mon. Wea. Rev., 130, 1397–1410.CrossRefGoogle Scholar
  26. Ringler, T.D. and Randall, D.A., 2002b: The ZM-grid: an alternative to the Z-grid. Mon. Wea. Rev., 130, 1411–1422.CrossRefGoogle Scholar
  27. Ringler, T.D., Thuburn, J., Klemp, J., and Skamarock, W.C., 2010: A unified approach to energy conservation and potential vorticity dynamics for arbitrarilystructured C-grids. J. Comp. Phys., 229, 2065–2090.CrossRefGoogle Scholar
  28. Sadourny, R., Arakawa, A., and Mintz, Y., 1968: Integration of the nondivergent barotropic vorticity equation with an icosahedral hexagonal grid for the sphere. Mon. Wea. Rev., 96, 351–356.CrossRefGoogle Scholar
  29. Sadourny, R., 1969: Numerical integration of the primitive equations on a spherical grid with hexagonal cells. Proceedings of the WMO/IUGG Symposium on Numerical Weather Prediction in Tokyo, Tech. Rep. of JMA, VII45 – VII52.Google Scholar
  30. Satoh, M., Tomita, H., Miura, H., Iga, S., and Nasuno, T., 2005: Development of a global cloud resolving model – a multi-scale structure of tropical convections. J. Earth Simulator, 3. 11–19.Google Scholar
  31. Skamarock,W. C., Klemp, J.B., Duda, M.G., Fowler, L.D., and Park, S.-H., 2012: A multi-scale nonhydrostatic atmospheric model using centroid Vornoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 3090-3105.CrossRefGoogle Scholar
  32. Staniforth, A. and Thuburn, J, 2012; Horizontal grids for global weather and climate prediction models: a review. Q. J. R. Meteorol. Soc., 138, 1–26.CrossRefGoogle Scholar
  33. Stuhne, G.R. and Peltier, W. R., 1996: Vortex erosion and amalgamation in a new model of large scale flow on the sphere. J. Comput. Phys., 128, 58–81.CrossRefGoogle Scholar
  34. Stuhne, G.R. and Peltier, W. R., 1999: New icosahedral grid-point discretizations of the shallow water equations on the sphere. J. Comput. Phys., 148, 23–58.CrossRefGoogle Scholar
  35. Swinbank, R., and Purser, R. J., 2006: Fibonacci grid: A novel approach to global modelling. Q. J. Roy. Met. Soc., 132, 1769–1793.CrossRefGoogle Scholar
  36. Thuburn, J., 1997: A PV-based shallow-water model on a hexagonal-icosahedral grid. Mon. Wea. Rev., 125, 2328–2347.CrossRefGoogle Scholar
  37. Thuburn, J., Ringler,W.C., Skamarock,W. C., and Klemp, J.B., 2009: Numerical representation of geostrophic modes on arbitrarily structured C-grids. J. Comp. Phys., 228, 8321–8335.CrossRefGoogle Scholar
  38. Tomita, H., Tsugawa, M., Satoh, M., and Goto, K., 2001: Shallow water model on a modified icosahedral geodesic grid by using spring dynamics. J. Comp. Phys., 174, 579–613.CrossRefGoogle Scholar
  39. Tomita, H., Satoh, M., and Goto, K., 2002: An optimization of icosahedral grid modified by spring dynamics. J. Comp. Phys., 183, 307–331.CrossRefGoogle Scholar
  40. Tomita, H. and Satoh, M., 2004: A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn. Res., 34, 357–400.CrossRefGoogle Scholar
  41. Tomita, H., Goto, K., and Satoh, M., 2008: A new approach of atmospheric general circulation model - Global cloud resolving model NICAM and its computational performance -. SIAM J. Sci. Comput., 30, 2755–2776.CrossRefGoogle Scholar
  42. Williamson, D. L., 1968: Integration of the barotropic vorticity equation on a spherical geodesic grid. Tellus, 20, 642–653.CrossRefGoogle Scholar
  43. Williamson, D. L., 1970: Integration of the primitive barotropic model over a spherical geodesic grid. Mon. Wea. Rev., 98, 512–520.CrossRefGoogle Scholar
  44. Williamson, D. L., Drake, J. B., Hack, J. J., Jacob, R., and Swarztrauber, P. N., 1992: A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys., 102, 211–224.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Masaki Satoh
    • 1
  1. 1.Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaJapan

Personalised recommendations