Blind Music Timbre Source Isolation by Multi- resolution Comparison of Spectrum Signatures

  • Xin Zhang
  • Wenxin Jiang
  • Zbigniew W. Ras
  • Rory Lewis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6086)

Abstract

Automatic indexing of music instruments for multi-timbre sounds is challenging, especially when partials from different sources are overlapping with each other. Temporal features, which have been successfully applied in monophonic sound timbre identification, failed to isolate music instrument in multi-timbre objects, since the detection of the start and end position of each music segment unit is very difficult. Spectral features of MPEG7 and other popular features provide economic computation but contain limited information about timbre. Being compared to the spectral features, spectrum signature features have less information loss; therefore may identify sound sources in multi-timbre music objects with higher accuracy. However, the high dimensionality of spectrum signature feature set requires intensive computing and causes estimation efficiency problem. To overcome these problems, the authors developed a new multi-resolution system with an iterative spectrum band matching device to provide fast and accurate recognition.

Keywords

Blind Music Sound SourcesIsolation STFT (Short-Time Fourier Transform) Automatic Indexing KNN Spectral Features 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akinobu, L., et al.: Julius software toolkit, http://julius.sourceforge.jp/en/
  2. 2.
    Balan, R.V., Rosca, J.P., Rickard, S.T.: Robustness of parametric source demixing in echoic environments. In: Proc. Int. Conf. on Independent Component Analysis and Blind Source Separation (ICA), pp. 144–148 (2001)Google Scholar
  3. 3.
    Brown, G.J., Cooke, M.P.: Computational auditory scene analysis. Computer Speech and Language 8, 297–336 (1994)CrossRefGoogle Scholar
  4. 4.
    Cardoso, J.F.: Blind source separation: statistical principles. Proceedings of the IEEE 9(10), 2009–2025 (1998)CrossRefGoogle Scholar
  5. 5.
    Casey, M.A., Westner, A.: Separation of mixed audio sources by independent subspace analysis. In: Proc. International Computer Music Conference (ICMC), pp. 154–161 (2000)Google Scholar
  6. 6.
    Cherry, E.C.: Some Experiments on the Recognition of Speech, with One and with Two Ears. Journal of the Acoustical Society of America 24, 975–979 (1953)CrossRefGoogle Scholar
  7. 7.
    Davies, M.E.: Audio source separation. In: Mathematics in Signal Processing V. Oxford University Press, Oxford (2002)Google Scholar
  8. 8.
    Dziubinski, M., Dalka, P., Kostek, B.: Estimation of Musical Sound Separation Algorithm Effectiveness Employing Neural Networks. Journal of Intelligent Information Systems 24(2/3), 133–158 (2005)CrossRefGoogle Scholar
  9. 9.
    Hyvarinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons, Chichester (2001)CrossRefGoogle Scholar
  10. 10.
    ISO/IEC JTC1/SC29/WG11, MPEG7 Overview (2002), http://mpeg.telecomitalialab.com/standards/mpeg-7/mpeg-7.htm
  11. 11.
    Jiang, W., Wieczorkowska, A., Ras, Z.W.: Music Instrument Estimation in Polyphonic Sound Based on Short-Term Spectrum Match. In: Hassanien, A.-E., Abraham, A., de Carvalho, A. (eds.) Data Mining: Theoretical Foundations and Applications. Studies in Computational Intelligence. Springer, Heidelberg (2009)Google Scholar
  12. 12.
    Jourjine, A.N., Rickard, S.T., Yilmaz, O.: Blind separation of disjoint orthogonal signals: Demixing N sources from 2 mixtures. In: Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), pp. V-2985–V-2988 (2000)Google Scholar
  13. 13.
    Kitahara, T., Goto, M., Komatani, K., Ogata, T., Okuno, H.G.: Instrument Identification in Polyphonic Music: Feature Weighting to Minimize Influence of Sound Overlaps. EURASIP Journal on Advances in Signal Processing, Article ID 51979 (2007)Google Scholar
  14. 14.
    Lindsay, A.T., Herre, J.: MPEG7 and MPEG7 Audio—An Overview. J. Audio Engineering Society 49, 589–594 (2001)Google Scholar
  15. 15.
    Logan, B.: Mel Frequency Cepstral Coefficients for Music Modeling. In: Proceedings of 1st Annual International Symposium on Music Information Retrieval (2000)Google Scholar
  16. 16.
    Ozerov, A., Philippe, P., Gribonval, R., Bimbot, F.: One microphone singing voice separation using source adapted models. In: Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pp. 90–93 (2005)Google Scholar
  17. 17.
    Scheirer, E., Slaney, M.: Construction and Evaluation of a Robust Multi-feature Speech/Music Discriminator. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (1997)Google Scholar
  18. 18.
    Sonic Foundry: Sound Forge. Software (2003)Google Scholar
  19. 19.
    Tzanetakis, G., Cook, P.: Musical Genre Classification of Audio Signals. IEEE Transactions Speech and Audio Processing 10, 293–302 (2002)CrossRefGoogle Scholar
  20. 20.
    Vincent, E., Gribonval, R.: Construction d’estimateurs oracles pour la separation de sources. In: Proc. 20th GRETSI Symposium on Signal and Image Processing, pp. 1245–1248 (2005)Google Scholar
  21. 21.
    Virtanen, T., Klapuri, A.: Separation of Harmonic Sound Sources Using Sinusoidal Modeling. In: IEEE International Conference on Acoustics, Speech and Signal Processing, Istanbul, Turkey (2000)Google Scholar
  22. 22.
    Zhang, X., Marasek, K., Ras, Z.W.: Maximum Likelihood Study for Sound Pattern Separation and Recognition. In: Proceedings of International Conference on Multimedia and Ubiquitous Engineering, Seoul, Korea, April 26-28, pp. 807–812 (2007)Google Scholar
  23. 23.
    Zhang, X., Ras, Z.W.: Analysis of Sound Features for Music Timbre Recognition. In: Proceedings of the IEEE CS International Conference on Multimedia and Ubiquitous Engineering, Seoul, Korea, April 26-28, pp. 3–8 (2007) (invited paper)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Xin Zhang
    • 1
  • Wenxin Jiang
    • 2
  • Zbigniew W. Ras
    • 2
    • 4
    • 5
  • Rory Lewis
    • 3
  1. 1.Dept. of Math. and Comp. ScienceUniv. of North CarolinaPembrokeUSA
  2. 2.Dept. of Comp. ScienceUniv. of North CarolinaCharlotteUSA
  3. 3.Dept. of Comp. ScienceUniv. of ColoradoColorado SpringsUSA
  4. 4.Polish-Japanese Institute of Information TechnologyWarsawPoland
  5. 5.Institute of Comp. SciencePolish Academy of SciencesWarsawPoland

Personalised recommendations