DRSA Decision Algorithm Analysis in Stylometric Processing of Literary Texts

  • Urszula Stańczyk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6086)

Abstract

When the indiscernibility relation, fundamental to Classical Rough Set Approach, is substituted with dominance relation, it results in Dominance-Based Rough Set Approach to data analysis. It enables support not only for nominal classification tasks, but also when ordinal properties on attribute values can be observed [1], making DRSA methodology well suited for stylometric processing of texts. Stylometry involves handling quantitative features of texts leading to characterisation of authors to the point of recognition of their individual writing styles. As always, selection of attributes is crucial to classification accuracy, as is the construction of a decision algorithm. When minimal cover gives unsatisfactory results, and all rules on examples algorithm returns very high number of rules, usually constraints are imposed by selection of some reduct and limiting the decision algorithm by including within it only rules with certain support. However, reducts are typically numerous and within them some of conditional attributes are used more often than others, which is also true for conditions specified by decision rules. The paper presents observations how the frequency of usage for features reflects on the performance of decision algorithms resulting from selection of rules with conditional attributes exploited most and least often.

Keywords

DRSA Decision Algorithm Relative Reduct Feature Selection Stylometry Data Mining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Greco, S., Matarazzo, B., Slowinski, R.: Rough set theory for multicriteria decision analysis. European Journal of Operational Research 129(1), 1–47 (2001)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Argamon, S., Karlgren, J., Shanahan, J.: Stylistic analysis of text for information access. In: Proceedings of the 28th International ACM Conference on Research and Development in Information Retrieval, Brazil (2005)Google Scholar
  3. 3.
    Peng, R., Hengartner, H.: Quantitative analysis of literary styles. The American Statistician 56(3), 15–38 (2002)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Shen, Q.: Rough feature selection for intelligent classifiers. In: Peters, J.F., Skowron, A., Marek, V.W., Orłowska, E., Słowiński, R., Ziarko, W.P. (eds.) Transactions on Rough Sets VII. LNCS, vol. 4400, pp. 244–255. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Peng, R.: Statistical aspects of literary style. Bachelor’s Thesis, Yale University (1999)Google Scholar
  6. 6.
    Stańczyk, U.: Dominance-based rough set approach employed in search of authorial invariants. In: Kurzyński, M., Woźniak, M. (eds.) Computer Recognition Systems 3. AISC, vol. 57, pp. 315–323. Springer, Heidelberg (2009)Google Scholar
  7. 7.
    Stańczyk, U.: Relative reduct-based selection of features for ANN classifier. In: Cyran, K., et al. (eds.) Man-Machine Interactions. AISC, vol. 59, pp. 335–344. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Stańczyk, U., Cyran, K.: On employing elements of rough set theory to stylometric analysis of literary texts. International Journal on Applied Mathematics and Informatics 1(2), 159–166 (2007)Google Scholar
  9. 9.
    Cyran, K., Stanczyk, U.: Indiscernibility relation for continuous attributes: application in image recognition. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 726–735. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Greco, S., Matarazzo, B., Slowinski, R.: Dominance-based rough set approach as a proper way of handling graduality in rough set theory. In: Peters, J.F., Skowron, A., Marek, V.W., Orłowska, E., Słowiński, R., Ziarko, W.P. (eds.) Transactions on Rough Sets VII. LNCS, vol. 4400, pp. 36–52. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Słowiński, R., Greco, S., Matarazzo, B.: Dominance-based rough set approach to reasoning about ordinal data. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 5–11. Springer, Heidelberg (2007)Google Scholar
  12. 12.
    Pawlak, Z.: Rough sets and intelligent data analysis. Information Sciences 147, 1–12 (2002)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Greco, S., Matarazzo, B., Slowinski, R.: The use of rough sets and fuzzy sets in Multi Criteria Decision Making. In: Gal, T., Hanne, T., Stewart, T. (eds.) Advances in Multiple Criteria Decision Making, pp. 14.1–14.59. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  14. 14.
    Greco, S., Matarazzo, B., Slowinski, R.: Handling missing values in rough set analysis of multi-attribute and multi-criteria decision problems. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 146–157. Springer, Heidelberg (1999)Google Scholar
  15. 15.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11(5), 341–356 (1982)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Moshkow, M., Skowron, A., Suraj, Z.: On covering attribute sets by reducts. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 175–180. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Urszula Stańczyk
    • 1
  1. 1.Institute of InformaticsSilesian University of TechnologyGliwicePoland

Personalised recommendations